Post spill monitoring: the data we already have and the new data we need

Brett Lyons (Cefas)

Policy Drivers: Marine monitoring providing source of baseline data

Water Framework Directive (WFD)

Marine Strategy Framework Directive

To put in place measures to achieve Good Environmental Status in Europe's seas by 2020

- Ecologically diverse and dynamic oceans and seas which are clean, healthy and productive within their intrinsic conditions, and;
- Use of the marine environment is sustainable - safeguarding the potential for uses and activities by current and future generations.

11 Descriptors of Good Environmental Status (GES)

No.	Descriptor
1	Biological diversity
2	Non-indigenous species
3	Commercial fish & shellfish
4	Food webs
5	Eutrophication
6	Seafloor integrity
7	Hydrographical conditions
8	Contaminants
9	Contaminants in seafood
10	Litter
11	Energy, incl. underwater noise

The organisation of marine monitoring in the UK

Clean Seas Environmental Monitoring Programme (CSEMP)

- OSPAR/MSFD focused spatial and temporal programme (status & trend)
- Applying internationally recommended biological and chemical techniques with approved <u>QA/QC</u> (developed by ICES/OSPAR)
- Integrated monitoring focusing on water, sediment and biota
 - Analytical chemistry (metals, PAHs, PCB, PBDEs, Dioxins)
 - Ecotoxicology (limited geographically and mainly historical)
 - Biomarkers (linked to metals and pollution by PAHs/PCBs)
 - Fish/shellfish disease (general and pollutant specific health markers)
 - Benthic ecology (better data available elsewhere!)
- <u>Supports critical mass and capacity in relation to the UK's</u> <u>marine chemical contaminants knowledge base and</u> <u>scientific expertise</u>

Easy access to CSEMP baseline data : MERMAN database

Easy access to CSEMP baseline data : MERMAN database

- The Marine Environment Monitoring and Assessment National database (MERMAN)
- Holds all CSEMP data (high level QA/QC)
- Assessment tools based on international standards (e.g. sediment quality guidelines)
- Temporal data 20+ years
- Potential to have data available in the event of a spill
- Limited spatial scale and set of contaminants measured

http://www.bodc.ac.uk/projects/uk/merman/

Other potential sources of chemical contaminant data currently available

- OSPAR Riverine Inputs and Direct Discharges – RID
- WFD Priority pollutants
 - 33 core priority substances (plant protection products, biocides, metals and other groups like PAH and PBDEs).
 - EA Chemical screen programme (GCMS scan) > 1000 chemicals (high LOD)
- Information from Dredge disposal site monitoring
- Other ad-hoc (e.g. commercial licencing consent, environmental Impact assessment data) and R&D information may be available.

What about HNS: Why relying on routine monitoring is never going to be enough

- Too many chemicals currently manufactured and shipped to have baseline data for all
- 2009: CAS registry = 50 million chemicals.... By 2011 60 million chemicals registered!
- Understanding fate and effects of spills is difficult as the data available for marine systems is often limited (e.g. toxicity & fate)
- Need to consider that not all marine systems are the same (vary widely in relation to temperature, salinity etc.)

The importance of environmental factors

Depth, Suspended sediment, Light

The importance of chemical properties

- Fate and effects of HNS spills less well recognised than those involving oil pollution
- Most oils float and are immiscible with water
- HNS chemicals exhibit a far greater range of properties that determine where they end up in the environment and what effect they have
- Need to consider things such as density, solubility and volatility
- ~50% by tonnage evaporators and floaters
- Often scarcity of data, little if any in relation to impacts on marine animals (e.g. most toxicological information on freshwater animals)
- Understanding properties allow us to tailor post spill responses

Prioritisation process to rank main HNS: risks & knowledge gaps

- Although rare spills do occur
 - Levoli Sun: 1000 tonnes styrene
 - MSC Napoli: >1600 tonnes of IMO classified dangerous goods
- *ARCOPOL identified 23 substances as a priority based on frequency of transport, occurrence of previous incidents, behaviour in seawater and toxicity
- Weight-of –evidence approaches
 - Volumes HNS transported around our coasts and incidents reported
 - HNS physico-chemical properties
 - Toxicities to marine organisms
- HNS: moderate to high toxicity, bioaccumulation potential, persistent and carcinogenic = <u>high risk!</u>

INS	GESAMP Classification				Carcinogenic	Previous incident	nt Physico-chemical	Trafficranking ^d
	Bioaccumulation	Biodegradation ^a	Acute toxicity	Chronic toxicity	effects ^b		properties ^c	
enzene	1	R	2	-	С	Bow Eagle	Е	3
tyrene monomer	3	R	3	-	C	Ievoli Sun	FE	8
ylenes	3	NR	3	0	NC	Cason	FE	7
yclohexane	3	NR	3	-	NC	Bow Eagle	E	14
oluene	2							
onene (all isomers)	4	ble SM-1. Pric	ority list o	f the Top 2	0 HNS for Eu	iropean Water	s for the RAMOCS	project based u
niline	0							
crylonitrile	2 the	revised GESA	MP hazar	d profile sy	stem. The al	ternative list is	adjusted to account	t for volatilizat
itrobenzene	1	D	antring	LIN	JC	LINK	(Alternative)	
ononanol	3	N	anking	п	10	HIN:	(Alternative)	
kyl (C5–C8, C9) benzenes	4	_						
onylphenol poly(4–12) ethoxylates	4							
ctane (all isomers)	5		1	Sty	rene monome	er Sulf	uric acid	
Nonanol (Nonyl alcohol)	3		2	v	lana	Dha	mborio opid	
ityl acrylate (all isomers)	2		2	Лу	lelle	Pho	sphoric acid	
i (2-ethylhexyl) adipate	2		3	So	dium hydroxi	de Styr	ene monomer	
ichloroethylene	2		4	c .	16	TH.	1	
exane (all isomers)	3		4	Su	ituric acid	Pher	101	
eptane (all isomers)	4							
Dodecanol	2		5	An	nmonia	Sodi	um hydroxide	
resols (all isomers)	2						2	
ecanoic acid erchloroethylene	4 2		6	Ph	osphoric acid	Am	nonia	
-1-200 M	100000		7	Dh	enol	Mat	hanol	
			1	FII	CHOI	IVICI.	iaioi	
			8	Me	ethanol	Xyle	ene	
			9	Be	nzene	Anil	ine	
						_	inc	
			10	Pa	lm oil	Ben	zene	

Centre for Environment Fisheries & Aquaculture Science

*The ARCOPOL – The Atlantic Regions' Coastal Pollution Response Project Neuparth et al., Marine Pollution Bulletin 62 (2011) 21-28

New data we need: HNS fate

- ITOPF funded project looked at 6 priority HNS identified by ARCOPOL project.
- CHEMMAP model used to look at dispersion and fate (nearshore) with different environmental variables (‰ and °C).
- Example Aniline (floater/dissolver, 4 hrs 1000 tonne release) a temp change 10 -30 °C significant effect on overall fate.
- After 24hrs
 - Evaporation fraction increased from 16% to 29%.
 - Degradation > from 1% to 12% total tonnage.
 - Seabed water conc. showed a commensurate change from a 4 day time weighted mean of 4.36 mg l-1at 10°C to 2.82 mg l-1 at 30°C.

Sheahan et al., Factors influencing the impact of HNS spilt in the marine environment

New data we need: HNS toxicity (lab studies)

- Range of toxicity test species
- Aniline, butyl acrylate and zinc sulphate
- Range of environmental conditions: 20 to 40 ‰ and 10 – 30°C
- In most cases, higher toxicity with increasing temperature and lower toxicity with increasing salinity.
- HNS spills more impact in summer in temperate regions and in lower salinity coastal or estuarine areas (these are also likely regions of higher marine traffic)

Centre for Environment Fisheries & Aquaculture Science

Sheahan et al., Factors influencing the impact of HNS spilt in the marine environment

Summary

- Routine monitoring driven by MSFD, OSPAR, WFD provides some potential baseline data
- Likely that for an oil based spill baseline data would be available and fate/effects reasonably understood
- HNS spill likely to have less baseline data available
- Risk based reviews underway to provide a better understanding of fate and effects
- Clear environmental conditions big factor in overall impact
- More research required to understand some of the fundamental issues relating to HNS marine spills

POLLUTION RESPONSE IN EMERGENCIES MARINE IMPACT ASSESSMENT AND MONITORING

POST-INCIDENT MONITORING GUIDELINES

Thank you

POLLUTION RESPONSE IN EMERGENCIES MARINE IMPACT ASSESSMENT AND MONITORING

> POST-INCIDENT MONITORING GUIDELINES AN INTRODUCTION

Centre for Environment Fisheries & Aquaculture Science

https://www.cefas.co.uk/premiam/

@Premiam_Spill

