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Executive Summary 
Monitoring strategies included the monitoring of microplastics for biota and sediments to fill 

the knowledge gap in monitoring data for Belize and more widely for the Caribbean and Central 

America. Occurrence of microplastics was confirmed for sediments with abundances ranging 

from 200 to 6,500 ± 1273 particles per kg dry weight sediment with polyethylene. Occurrence 

of microplastics was confirmed for the economically important Queen conch as well as for the 

freshwater cichlid Cichlasoma synspilum used for human consumption by locals. Plastic items 

were present in 41% of the Queen conch samples and in 36% of the riverine fish samples 

investigated. Polypropylene and cellophane were the most prevalent polymers found in conchs 

while poly(ethylene:propylene:diene) and polyethylene being the most commonly found 

polymers in fish.  

Further monitoring is however recommended for both sediments and biota due to the relatively 

restricted sample size investigated. Additional monitoring of microplastics in biota is 

recommended to investigate commercially available species and subsequent impacts on human 

health. 

Training courses, on microplastics monitoring and analysis in environmental samples, were 

delivered to the Department of the Environment (DOE), the university of Belize (UB) as well as 

other public and private organisations including the Belize Bureau of Standards (BBS), The Belize 

Agricultural Health Authority (BAHA) and the Belize Coastal Zone Management Authority and 

Institute (CZMAI). Training courses were delivered to ensure knowledge transfer and staff 

building capacity to produce long-term monitoring baseline datasets.  
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1 Introduction 

1.1 Sources, occurrence and fate of microplastics in the marine environment  
Plastics are polymers of either natural or synthetic organic compounds, considered to be 

biochemically inert due to their high molecular mass, to which additives are added to enable 

processing and/or to give properties that are desired in a certain application (OECD, 2009). 

World plastics production has increased from 322 million tonnes in 2016 to 335 million tonnes 

in 2018. A high proportion of marine litter comprises of plastics contributing to the increase of 

microplastics in the marine environment. Microplastics have been defined as plastic particles 

with size < 5 mm in diameter (Arthur et al, 2008), which can be divided into primary 

microplastics and secondary microplastics. Primary microplastics are most commonly found in 

industrial, domestic cleaning products and synthetic textiles, while secondary microplastics are 

usually fragmented from larger plastic debris via weathering, ultraviolet degradation, 

biodegradation or a combination of these.  

Microplastics have been found on beaches, coastal zones, open-sea and deep-sea sediments 

worldwide. Microplastics have also been reported in high concentrations in remote locations as 

far as the Arctic (A. Lusher et al., 2015; Bergmann et al., 2017; Kanhai et al., 2018). Most plastic, 

including microplastic that enters the sea, originates from land-based sources, such as sewage 

and storm water, or ocean-based sources, including discarded and lost fishing items (Li, 2018). 

It has been estimated that land sources represent 80% of microplastic pollution in the ocean  

(Jambeck et al., 2015) with rivers representing the main pathways for the transport of plastics 

to ocean (Lebreton et al., 2017). Deep-sea sediments have been suggested as a likely final sink 

for microplastics in the marine environment (Woodall et al., 2014).  

Field and laboratory studies have demonstrated the ingestion of microplastics by a large range 

of marine organisms representing various trophic levels including seabirds, marine mammals, 

fish and invertebrates (GESAMP Joint Group of Experts on the Scientific Aspects of Marine 

Environmental Protection, 2015). Detrimental physical effects of microplastics have been 

reported following ingestion (Wright et al., 2013). There is also evidence that microplastics can 

act as carriers for harmful sorbed co-contaminants (i.e. hydrophobic organic compounds, 

additives, pathogens) with the potential for transfer to biota following ingestion (Rochman et 

al., 2013; Tanaka et al., 2013; Bakir et al., 2014). It has also been suggested that the transfer of 

sorbed co-contaminants from microplastics to biota would be negligible compared to other 

routes of exposure (Bakir et al., 2016; Koelmans et al., 2016; Lohmann, 2017).  
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 Monitoring of microplastics in the marine environment  
1.1.1.1 Microplastic monitoring in sediments  

Microplastics have been more frequently monitored in sediments than in the water column 

(Hidalgo-Ruz et al., 2012; Löder and Gerdts, 2015). Monitoring has been mainly focusing on 

beaches or subtidal sediments (Frias et al., 2010; Maes et al., 2017). Subtidal sediments can be 

sampled from vessels with grabs, e.g. Van Veen or Ekman grab or corers (Löder and Gerdts, 

2015).  

 

1.1.1.2 Microplastics monitoring in biota  
The occurrence and fate of microplastics in biota has been reported in several studies. 

Organisms were sampled from a range of habitats including the sea-surface, water column, 

benthos, estuaries, beaches and aquacultures (Ward et al., 2009; Foekema et al., 2013; Lusher 

et al., 2013; Avio et al., 2015; Lusher et al., 2017; Hermsen et al., 2017). Consequently, 

considering the wide range of habitats targeted, a range of sampling methods have been used. 

Sampling techniques included the use of grabs, traps, creels and trawls (Murray and Cowie, 

2011; Welden and Cowie, 2016). Some species are also collected by hand, which is often the 

case for annelids, bivalves and crustaceans (Van Cauwenberghe et al., 2015; Li et al., 2018). 

Another method is the direct collection from shellfish, fish farms and commercial fish markets, 

where the capture method is unknown (Li et al., 2018).  

A range of methods has also been used for the isolation of microplastics in biota including 

dissection, depuration and digestion of tissues with chemicals or enzymes. Visualisation of 

suspected plastic particles is usually being carried out under microscope and -FT-IR and ATR-

FT-IR the main techniques for polymer identification. 

The Caribbean region is widely recognised to be a hot spot for marine biodiversity 

(Birchenough., 2017). The area hosts a wide range of habitats and species of conservation and 

fisheries importance. The main fisheries in the area concentrates on spiny lobster and Queen 

conch. These species are key to sustain sources of human protein intake, livelihoods and 

economic trade in these areas. On the direction of the DOE and the Belize Fisheries Department, 

Queen conch was selected as one of the most important economic species. Only one such 

economically important species was chosen due to time constraints. Furthermore, specimens 

were already available from the Commonwealth Marine Economies (CME) programme. The 

project, based in Belize since 2017, entitled “Assessing the vulnerability of commercial species 

to ocean acidification and fisheries” has a programme of work which collects water and 

biological samples for both species. Some of these samples were dissected and the digestive 

tracks were kept for further analysis. These samples were stored and further analysed for the 
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presence of microplastics in support of the ongoing research in Belize under the Commonwealth 

Litter Programme (CLiP).  

 
1.1.1.3 Characterisation and quantification of microplastics in environmental samples  

Different methods are currently being applied for the extraction and characterisation of 

microplastics in environmental samples. The lack of standardisation in analytical techniques 

implies some difficulties in the comparison between datasets generated from various sources. 

Characterisation and Identification of polymer type has been mainly carried out by the following 

techniques: i) micro-Fourier Transformed Infrared spectroscopy (μ-FT-IR), ii) focal plane array 

(FPA) Fourier Transformed Infrared microscopy (FPA FT-IR), iii) Attenuated Total Reflection 

Fourier Transformed Infrared spectroscopy (ATR-FT-IR) iv) micro-Raman spectroscopy (μ-

RAMAN), v) Pyrolysis-gas chromatography-mass spectrometry (Py-GCMS) and vi) Fluorescence 

tagging of polymers using Nile red. It is worth noting that -FT-IR and ATR-FT-IR have been 

mainly used as it allows both the visual and chemical characterisation of polymers as compared 

to Py-GCMS. 

1.2 Creation of a Belizean scientific hub 
One of the deliverables of the project was the creation of a sustainable microplastic laboratory 

for the long-term monitoring of macro and microplastics, in environmental matrices including 

biota and sediments. The development of the laboratory facilities incorporated a training 

programme in analytical techniques (see section 8) as well the production of baseline data for 

the occurrence and abundance of macro and microplastics in biota and in coastal and offshore 

sediments. Ensuring staff building capacity in Belize will allow the delivery of long-term 

monitoring programmes with the regular production of data, which could be integrated in 

environmental management programmes or used as evidence to measure impacts from 

recently implemented national environmental policies. 

 

 Location of the microplastic laboratory  
The laboratory facilities, also referred to as the Belizean scientific hub, was located at the 

University of Belize, Belmopan over the duration of the project before its relocation to a brand-

new facility located at the DOE.  
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Figure 1.1 Location of the Belizean scientific hub at the University of Belize, Belmopan campus.  
 

2 Aims and objectives  
The main aim of this part of the project, included in the CLiP Science theme, was to create an 

analytical laboratory facility for the extraction, detection and quantification of macro and 

microplastics in environmental samples. The main objectives included i) providing essential 

laboratory equipment for the successful delivery of the project, ii) to enable staff building 

capacity from training courses and practical demonstrations, iii) to investigate the abundance, 

quantities and properties of macro and microplastics in biota, iv) to investigate the abundance, 

quantities and properties of macro and microplastics in sediment, v) to investigate impacts of 

some biotic and abiotic factors on the quantities of macro and microplastics in environmental 

samples including feeding strategies for biota and sediment particle size.  

 

3 Materials and methods  
 Sediments  

Sediments were collected by using a small Van Veen grab (Duncan and Associates, UK, sampled 

area 0.025 m2) from the 22  May 2019 to the 6  June 2019. The selection of the sediment 

sampling sites was identified following a consultation with key monitoring stakeholders as 

identified by the DOE. This included, DOE, UB, Belize CZMAI and Scouts Association. Identified 
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sites were further validated by the Cefas monitoring team, following a site inspection, to ensure 

practical feasibilities according to technical and safety requirements.  

Samples were collected at six locations around Belize: Succotz Ferry, San Ignacio Board Bridge, 

Mennonite Beach and Burrell Boom Bridge to characterise riverine inputs of microplastics and 

Belize River Northern Highway and Haulover Creek Pier to characterise coastal microplastic 

concentrations (Figure 3.1). Sediment grabs were subsampled for microplastic and Particle Size 

Analysis (PSA) with a rinsed steel spoon into pre-rinsed sample jars. The jars were pre-rinsed 

three times with Reverse Osmosis (RO) water in the laboratory and covered with pre-rinsed 

aluminium foil before being capped with a plastic lid. Another pre-rinsed collecting pot was 

exposed to the atmosphere during the time of sampling to investigate background 

contamination during sampling. The samples were stored frozen (-18 °C) until further analysis 

after returning from the site. In total six sediment grabs were sampled and due to time 

restraints only four sites have been processed for the quantification of microplastics (section 

3.4).  

 
Figure 3.1 Sediment sampling sites for microplastics analysis  

 

 Biota  
Occurrence and abundance of microplastics was carried out for the Queen conch Lobatus gigas 

and some riverine fish. The selection of the biota of interest was decided following a 

consultation with the DOE and the Belize Fisheries Department (BFD) to ensure selection of 
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commercially and ecologically important species with a direct impact on human health. Further 

criteria were assessed including (GESAMP, 2019): 

- Regional representation (sessile or mobile species representative of a specific geographical 

range)  

- Ethically sound (not protected or endangered)  

- Abundant in the sampled area 

- Species that are directly linkable to impact and effects 

- Species that are globally comparable to understand global contexts 

Following the selection process, species investigated included the Queen conch (L. gigas) and 

specimens of Cichlasoma synspilum, commonly known as redhead cichlid.  

The Queen conch can be found throughout the coast of Belize and is a species of ecological and 

commercial importance. Twenty-two samples of L. gigas (Queen conch) were provided by the 

CME programme and were collected between the 03 to the 05 of December 2018 from fishing 

areas 1 and 2 Figure 3.2(a) and sampling areas are shown by the red dots in Figure 3.2(b).  

Specimens of Cichlasoma synspilum, commonly known as redhead cichlid, were used in this 

study. C. synspilum is a native cichlid in Belize which lives in freshwater and feeds on a variety 

of food items including fishes, insects, snails and plant material. This fish is of importance to the 

local ecosystem and is also used for human consumption by a large proportion of the Belizean 

community. Fish samples were collected within the middle reaches of the Belize River, between 

Santa Familia village and Georgeville village (Figure 3.3 and Figure 3.4). Specimens of C. 

synspilum were collected using a 6 ft tall, 10 ft diameter, 30 mm mesh-size cast net. Fish were 

collected during the dry season months of June and July 2019. A sample size (n=50) was included 

in this study. After collection, fish samples were immediately anesthetized in buffered solution 

containing clove oil (100 ppm) and individually wrapped in foil paper and placed inside double 

Ziploc plastic bags. Bags containing fish were placed in a cooler with ice and immediately 

transported to the Aquatic Environmental Studies laboratory of the University of Belize for 

processing. All sampling points were georeferenced for later mapping of the sites sampled. Total 

length (L) of each fish was measured to nearest 0.1 cm using a measuring ruler and a piece of 

string, and body weight (W) was measured in grams using a FD6 balance scale (Ohaus 

Cooperation, Pine Brook, NJ USA). 
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Figure 3.2 (a) Fishing areas in Belize and (b) sampling locations for (red) biological (conchs) and (yellow) water 
samples.  
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Figure 3.3 Sampling sites for the riverine fish species.  
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Figure 3.4 Collection of the riverine fish Cichlasoma synspilum. Photo by Elisabeta Waqa.  

 

 Chemicals  
The chemicals used in this study are listed in Table 3.1 and were sourced from a local supplier 

(Femagra, Belize).  

 
Table 3.1 List of chemicals, manufacturers and suppliers 

Chemicals Molecular formula Manufacturer/Supplier Purity (%) 

Potassium 

hydroxide 

KOH Femagra, Belize - 

Sodium 

hypochlorite 

NaClO Femagra, Belize 13% active chlorine 

Ethanol C2H6O Femagra, Belize 95% purity  

Nile red C20H18N2O2 VWR 99% purity 

Sodium chloride NaCl  Industrial grade 

 

 Contamination control  
Microplastics are ubiquitous in the environment and it is important to have contamination 

control procedures in place when working in a microplastic laboratory. Sources of 

contamination can vary ranging from synthetic clothing to dust including plastic contamination 

from plasticware (Wesch et al., 2017). A series of step were taken in order to reduce ambient 

contamination in the laboratory but also in the field during the collection of samples. To reduce 

ambient contamination in the laboratory, 100% cotton lab coats were purchased and used for 

the entire duration of the study to reduce contamination of the samples with synthetic fibres. 

Room air recirculation was also minimised during the day to reduce contamination with dust. 
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Manipulation of the samples (sediments and biota) was carried out under a laminar flow to 

reduce ambient contamination. Prior to use, all glassware was cleaned using a laboratory 

detergent and rinsed using r RO water. All chemical solutions used in this study were previously 

filtered using a 47 mm diameter 0.2 m regenerated cellulose membrane. Contamination 

control was carried out by using blank filters processed in the same way as environmental 

samples for each batch of samples processed. The number of microplastics quantified onto 

blank filters were then removed from the total number of microplastics quantified in the 

environmental samples to compensate for background contamination. Control filters were used 

alongside the preparation of the sediment samples. For time efficiency, a procedural control 

was prepared with every batch of samples and subjected to the same preparation steps as 

detailed in sections 3.2.  

 

 Recovery study and validation  
As a validation step, each type of filter membrane used in this study were spiked with a known 

number of plastic particles to investigate recovery rates using both a visual and an automatic 

particle counting method. Polymers used included LDPE in a film like state as well as a foam like 

state.  

 

 Quality control and polymer identification using Fourier 
Transform infrared spectroscopy (FT-IR) 

Polymer identification of some selected particles was carried out using attenuated total 

reflection Fourier Transform infrared spectroscopy (ATR-FT-IR) using a Thermo Fisher Scientific 

Nicolet iS5 ATR-FTIR with an OMNIC software (version 9.9.473) and by comparison of their IR 

spectra to a polymer library. ATR-FT-IR has been shown to be a fast and effective tool for the 

identification of polymers of plastic marine debris, including those ingested by marine 

organisms (Jung et al., 2018). Particles exhibiting extended weathering or below the suitable 

size range for ATR-FT-IR were recommended for analysis using -FT-IR with microscope. For 

microplastics, about only one particle was identified for 100 samples (1%). Spectra were 

collected in the range 4000 – 650 cm-1 at a resolution of 4 cm-1. Polymer identification was 

verified based on the % match against a polymer library. Only spectra matched greater than 70 

% were accepted. Quality control was carried out with the analysis of a polystyrene reference 

material before each batch. Results are shown in Appendices 1 to 4.  
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3.2 Occurrence of microplastics in sediments in the coastal and marine 
environment  

 Sample preparation and extraction  
The sample preparation process is summarised in Figure 3.1. The main steps include drying of 

the sample, density separation, alkaline digestion, fluorescence tagging and digital imaging of 

the samples.  

 

 
Figure 3.5 Schematic diagram of the protocol for the detection and quantification of microplastics in sediment 
samples. 
 

 Drying of the sediments 
Collected sediment samples were thoroughly homogenised using a metal spatula in a 

fume cupboard and the lids were replaced with 15 cm Whatman 509 filter papers, held 

into place using small metal wires. Each sample was dried in a drying cabinet below 50°C 

for three days. 

 Weighing of the samples  
Prior to weighing of the samples, each pot was homogenised using a rinsed cleaned metal 

spatula. Using two figures analytical balance, 5g of the sediment were weighed into three 50 

mL polypropylene centrifuge tubes in a fume cupboard with ventilation. 

 

 Density separation  
Density separation was carried out by using a 1.2 g mL-1 solution of saturated sodium chloride 

(NaCl). The saturated sodium chloride solution was previously filtered using a 47 mm diameter 
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regenerated cellulose with a 0.2 m pore size. Approximately 35 mL of sodium chloride was 

added to each of the centrifuge tube and 37 mL was added to an empty tube as a control. The 

tubes were then well shaken to homogenise the samples. Each tube was centrifugated at 

3900xG for five minutes. Each supernatant was transferred to a previously cleaned filtration 

unit and filtered using a 0.2 m porosity Whatman cellulose nitrate membrane. The whole 

process was repeated two more times and the supernatants combined on the same filter. 

Residues of sodium chloride were rinsed with 100 mL of deionised water and particles stuck 

onto the funnels were rinsed using deionised water. Each filter was then carefully transferred 

to previously cleaned 100 mL glass beakers with a glass lid for the alkaline digest process 

(section 3.2.5.2). 

 

 Preparation of the chemical solutions  
3.2.5.1 Preparation of the saturated sodium chloride solution 

A saturated solution of sodium chloride (NaCl) was prepared by adding 200 g of a technical 

grade NaCl to about 800 mL of RO water in a clean 1 L beaker on a heating place at 30°C with a 

magnetic stirrer. Additional NaCl was added until saturation of the solution. The solution was 

filtered through a regenerated cellulose 0.2 µm pore size filter disk into a RO washed conical 

filter flask and was transferred to a RO ground glass stoppered bottle until ready for use. Density 

of the solution (min 1.2 g mL-1) was confirmed by weight using an analytical balance.  

 

3.2.5.2 Preparation of the 30% KOH:NaClO solution 
For 1 L of reagent 150 ml of saturated KOH solution (1120 g L-1) and 160 mL NaClO solution 

(13% active chlorine) is mixed into 690 mL RO water. The solution was filtered through a 

regenerated cellulose 0.2 µm pore size filter disk into a RO washed conical filter flask and was 

transferred to a RO ground glass stoppered bottle until ready for use. 

 
3.2.5.3 Preparation of the Nile red solution  

0.01 g of Nile Red powder was weighed into a small petri dish on an analytical balance and 

dissolve in 1 L of ethanol using the glass coated magnetic stirrer to ensure fully dissolved. The 

solution was filtered through a regenerated cellulose 0.2 µm pore size filter disk into a RO 

washed conical filter flask to remove contaminating particles and transfer into well sealed (e.g. 

screw cap) amber glass bottles to prevent loss of volatile alcohol. 

 

 Particle Size Analysis (PSA) 
PSA was carried out using wet splitting into silt/clay (< 63 m), sand (63m – 4 mm) and gravel 

(> 4mm) fractions only. For each sediment grab sample collected, a sub-sample was kept for 
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PSA analysis in a 120 mL collecting glass pot. The sample was kept in a freezer at -18°C until 

ready for analysis.  

 

 Occurrence of microplastics in biota in the freshwater and 
marine environment  

The sample preparation process is summarised in Figure 3.6.  

 
Figure 3.6 Schematic diagram of the protocol for the detection and quantification of microplastics in sediment 
samples. 
 

Whole conchs (removed from their shells) (n=22) were provided to the laboratory and further 

dissected to remove the digestive tract using an air recirculating cabinet Figure 3.7.  

 

 
Figure 3.7 Dissection and removal of the conch’s digestive tract and conch’s morphology (Higuita-Valencia et al., 
2018).  
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Each digestive tract was transferred to a 120 mL previously RO cleaned glass collecting pot and 

the wet weight of the tissues (including the gut content) recorded. 5 mL of a 30% KOH:NaClO 

solution was added per g of wet weight tissue collected. Samples were sonicated for 15 minutes 

and were incubated at 40°C for three days under constant agitation at 120 rpm before filtration 

using 47 mm diameter Whatman glass microfibre filters (GF/D) 2.7 m porosity. Due to the large 

sediment content in their digestive tract, a large solid deposit was left after incubation. To avoid 

any blockages of the filters during the filtration process, the solid phase was carefully 

transferred into centrifuge tubes and potential plastic items were further extracted by flotation 

using the saturated solution of sodium chloride (d: 1.2 g mL-1). For time efficiency, the 

extraction of plastic particles from the solid phase was only carried out once. After the filtration 

step, about 5 mL of the Nile red solution was added to each filter and left between 30 and 60 

minutes before rinsing with RO water. Imaging and counting of the fluorescence tagged 

particles was carried out as detailed in section 3.2.8.  

For the fish samples, the digestive tract was removed following dissection in the laboratory 

while respecting the integrity of the gut content Figure 3.4. Each digestive tract was transferred 

to a 120 mL previously RO cleaned glass collecting pot and the wet weight of the tissues 

(including the gut content) recorded. Samples were digested and incubated as detailed above.  

 
Figure 3.8 Collection, dissection and analysis of the fish samples by staff from UB in collaboration with the DOE and 
local fishermen.  

 

 Imaging, quantification and reporting units  
Following filtration of the sediment and biota samples and staining process using Nile red, filters 

were investigated using a VisiScope® SZT360-6 stereo microscope (VWR, UK) equipped with a 

digital USB camera (VisiCam® B5) for image acquisition. A digital camera was also used (Canon 

EOS 800D DSLR with EF-S 18-55 mm) for the imaging of the filters using a blue light (420-470 

nm) (Foster & Freeman Limited, UK) to induce fluorescence of the stained plastic particles 

Figure 3.9. The digital imaging process are detailed in Maes et al. (2017). Quantification of 

microplastics was carried by counting the number of fluorescent particles. Plastic particles for 

sediment samples were expressed in number of particles per kg dry weight sediment, while 



  

CLiP Belize Microplastics and training report   Page 8 of 52 

reporting units for biota included number of items per individual and number of items per g wet 

weight.  

 

 
Figure 3.9 Quantification of microplastics in the laboratory: (a) Fluorescence tagging of polymers, (b) digital imaging 
and (c) microscopic analysis.  
 

3.3 Statistical analysis  
To study variation among and between groups, ANOVA (analysis of variance) was used to 

analyse the differences among group means, followed by Tukey HSD post hoc test as the 

multiple comparison procedure using PAST version 3.25 (Hammer et al., 2019). Both ANOVA 

and Tukey's test assume independence of samples, homogeneity of variance and normality of 

residuals (Zar, 1999). Box-Cox transformation was used to transform non-normalised data. In 

addition, both ANOVA and Tukey's test assumes approximately similar population sizes, even 

though both tests seem to be relatively robust against deviations from the assumptions 

(Norwegian Environment Agency, 2018; Osborne, 2010; Zar, 1999). As an additional 

precautionary step for any type I errors a more conservative p value was selected (p < 0.01) 

where heterogeneous variances remained after transformation.  

 

4 Results  

4.1 Contamination and quality control 
 Contamination control  

Initial concentrations of microplastics onto blank filters are shown in Figure 4.1(a). Level of 

ambient contamination was relatively high for the first set of blank filters with nine and eight 

particles per filter, respectively. Following this issue, additional contamination control 

procedures were implemented including cleaning of the surfaces before use, reduction of the 

room air recirculation system and additional dusting of the working areas. The implemented 

extra steps allowed a reduction of the ambient contamination with a reduction to one to two 

items per blank filter Figure 4.1(a).  
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All the collecting pots were pre-rinsed with RO water and capped with foil. Some prepared pots 

were analysed to determine laboratory ambient contamination. During sampling, an empty 

collecting pot was left uncovered to compensate for atmospheric input of plastic particles. 

Results are shown in Figure 4.1(b). Atmospheric input of plastic particles was relatively low for 

three of the four sampling sites presented here with a mean value of 1.7 items per collecting 

pot. The field control collecting pot was heavily contaminated for one site (Succotz Ferry) with 

14 suspected plastic items onto filter. This high contamination level was due to the collection 

of sediment samples near a ferry transporting passengers and vehicles. City dust and road wear 

have been defined as important sources of microplastics including paint polymers, fibres from 

clothes as well as synthetic rubber particles from car tyres (Kole et al., 2017).  
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Figure 4.1 Summary of the suspected plastic items onto blank filters (regenerated cellulose, 47 mm diameter, 0.2 m 
porosity) for (a) laboratory blank filters and (b) field blank filters (regenerated cellulose, 47 mm diameter, 0.2 m 
porosity).  

 Recovery studies  
Recovery studies were carried out to validate the fluorescence of plastics and to investigate the 

accuracy of the automatic counting method used here. The recovery study was only carried out 

in duplicate to highlight any deviations from the previous larger scale recovery studies carried 

out during CLiP South Pacific and internally at Cefas on an extended range of polymers including 

Nylon, unplasticised PVC (uPVC) and polyethylene. Results are presented in Figure 4.2.  

 

(a) 

(b) 
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Figure 4.2 Recovery studies for (a) Regenerated cellulose filter spiked with PE items (47 mm – 0.2 m porosity), (b) 
GF/D filter spiked with PE foam items (47 mm – 2.7 m porosity) and (c) GF/D filter with film PE items (47 mm – 2.7 
m porosity).  
 

(a) 

(b) 

(c) 
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4.2 Occurrence of microplastics in sediments in the costal environment 
 Spatial variations  

The occurrence and abundance of microplastics in sediment were investigated for a limited 

number of sites (n=4). No macroplastics (> 5 mm) were found in sediments while microplastics 

(< 5 mm) were detected in all the sediments under investigation. Concentrations ranged from 

200 to 6500 ± 1273 particles per kg dry weight sediment (Figure 4.3). Concentration of 

microplastics were significantly higher for Succotz Ferry (p<0.01) as compared to other sites and 

level of contamination followed the order Succotz Ferry > Mennonite Beach > San Ignacio Board 

Bridge = Burell Boom Bridge.  

 

 
Figure 4.3 Number of particles per kg dry weight sediment collected for selected locations in Belize. Letters refer to 
grouping following a one-way ANOVA using a Tukey (HSD) post hoc test after a Box-Cox transformation of the data. 
Means that do not share a letter are significantly different (p=0.01). 
 

 Impact of PSA 
To investigate the impact of particle size on the abundance of microplastics in sediments, 

sediments collected alongside the grab samples were analysed for PSA (Figure 4.4). 

A scatterplot of both the number of particles per kg dry weight sediment and the standard 

deviation values against % gravel, % sand and % silt/clay indicated an increase in abundance 

with a higher percentage of silt/clay as compared to higher percentages of gravel and sand. 

However, a higher variability between the replicates was also observed with an increase in 

standard deviations (SD) for samples with a higher percentage of silt/clay (see Appendix 5). 
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Figure 4.4 PSA for the sediments investigated for the occurrence and abundance of microplastics.  
 

 Uncertainties and evaluation of method 
For any analytical methods, associated limitations occur. False positives can occur from the 

presence of some biological materials which can also sorb the dye and produce a fluorescence 

similar to plastic polymers including crushed shells or pieces of corals (Maes et al., 2017). While 

the occurrence of false positives cannot be entirely removed from the technique, some steps 

are being implemented and used to reduce the occurrence of false positives including 

microscopic analysis complementary to fluorescence counting as well as the use of ATR-FTIR for 

polymer identification.  

 

 Occurrence of microplastics in biota 
 Microplastics in Conchs 

No macroplastics have been found in the digestive tract of conchs (n=22). Microplastics were 

present in 41% of the individuals under investigation with an average concentration of 1.3 (0 – 

7) items per individual. This corresponded to an average of 0.09 (0 – 1.01) items per g wet 

weight tissues (Figure 4.5).  

Analysis of the polymer type using ATR-FTIR indicated that PP and cellophane represented the 

most commonly found type of plastic in conchs with a 40% occurrence. 20% of the suspected 

particles analysed could not determine due to poor library match probably due to their 
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advanced weathering status or due to their biological origin (i.e. non-plastics) (Figure 4.6). Only 

library matched above 70% were considered in this study and low spectral match percentage 

for cellophane was considered to correspond to cellulose-based material types rather than a 

synthetic material. Spectral data analysis is presented in Appendix 3.  

 

 
Figure 4.5 number of plastic items per individual and per g tissue wet weight (n=22).  
 

 
Figure 4.6 Microplastics (below 5 mm in size) extracted from conchs and analysed for QC classified according to their 
polymer type (n=5). 
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 Microplastics in riverine and marine fish 
Plastic items were detected in 36% of the fish investigated (n=22). No macroplastics (> 5mm) 

were observed. A total of ten items were extracted from the tissues with an average of 0.7 items 

per fish. Most commonly found polymer was poly(ethylene:propylene:diene) (50%), followed 

by polyethylene (30%) and Cellophane (20%). 44% of items suspected to be plastics were either 

not identified due to low library match (< 70%) or were identified as natural particles (Figure 

4.7). 

 

 
Figure 4.7 Microplastics (below 5 mm in size) extracted from fish and analysed for QC classified according to their 
polymer type (n=18).  
 

5 Discussion  

5.1 Occurrence and abundance of microplastics in sediment in the coastal 
environment  
Data on the occurrence and abundance of microplastics in sediment for Belize are limited and 

there is an urgent need to fill this knowledge gap with some monitoring baseline data. 

Microplastics (< 5mm) were detected in all the sediment samples collected while no 

macroplastics (> 5 mm) were observed. The abundance of microplastics in sediments ranged 

from 200 to 6500 ± 1273 particles per kg dry weight sediment. The abundance of microplastics 

was significantly higher for the Succotz Ferry sites (p<0.01) with 6500 ± 1273 particles per kg 

dry weight sediment followed by Mennonite Beach (1267 ± 306), Burrell Broom Bridge (267 ± 

115) and San Ignacio Board Bridge with 200 particles per kg dry weight sediment.  

PSA suggested a greater abundance of microplastics for sediments with higher silt/clay 

composition. This was in agreement with previous studies that have shown that microplastic 

density was directly proportional to the content of silt/clay (Kazmiruk et al., 2018; 
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Wahyuningsih et al., 2018). However, data suggested that associated variations between 

replicates were much higher for sediments with a higher % of silt/clay probably due to these 

samples being more difficult to homogenise.  

Investigation into the abundance of microplastics in sediments highlighted different “hot spots” 

for microplastic contamination including the Succotz Ferry site and Mennonite Beach (Figure 

3.1).  

• Xuanantunich Hand Cranked River Ferry (Succotz Ferry) 

Succotz Ferry was characterised as a “hot spot” for microplastic contamination. Local activities 

at that site are varied including tourism, use of the river for recreational activities with the 

operation of a Ferry service transporting passengers and vehicles across the river (Figure 5.1). 

The high contamination level of the field blank at that site (see section 4.1.1) indicated that 

atmospheric input of particles was important for that area. City dust and urban runoffs, 

including paint polymers and synthetic rubber particles from car tyres have been identified as 

important sources of microplastics in the environment (Kole et al., 2017). Rivers have also been 

identified as important pathways for the entry of microplastics in the marine environment 

(Rochman et al., 2013) and it is not surprising that high concentrations of microplastics have 

been found for a riverine system.  

 
Figure 5.1 Anthropogenic activities related to the Xuanantunich Hand Cranked River Ferry (Succotz Ferry site).  
 

• Mennonite Beach 

While the abundance of microplastics was much lower for Mennonite Beach as compared to 

the Succotz Ferry site, concentration of microplastics was elevated compared to the other 

sites (Figure 4.2). High concentration of microplastics in sediment could be explained by the 
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proximity of the site to the Spanish lookout which is a settlement in the Cayo district of Belize 

with a population of 2,253 in 482 households (Statistical Institute of Belize, 2017). Main 

activities in the area include agriculture and woodwork.  

 

The number of particles varies greatly between studies and between sampling areas (Table 

5.1). Concentrations recorded for Belize (200 – 6500 ± 1273 particles per kg dry weight 

sediment) were relatively low compared to other locations. As a comparison the smaller 

concentration range was reported by Crichton et al. (2017) for the Canadian shorelines with a 

concentration between 83 and 161.8 particles per kg sediment dry weight. Highest 

concentrations were reported by Manalu et al. (2017) for Jakarta Bay with a concentration 

ranging from 18,405 to 38,790 particles per kg sediment dry weight.  

 
Table 5.1 Number of particles per kg dry weight sediment reported in the literature for several locations. 

   Quantity in 

sediment 

 

Continent Sampling area Characteristics (numbers of 

particles/kg 

dw) 

References 

Oceania South Pacific 

Ocean 

Port Vila harbour 333 – 33,300 CLiP South Pacific 

South Pacific 

Ocean 

Solomon Islands 450 – 15,167 CLiP South Pacific 

America Canada Baynes Sound and 

Lambert Channel, 

British Columbia 

up to 

25,000 

(Kazmiruk, 

Kazmiruk and 

Bendell, 2018) 

Canada Intertidal, 

Halifax 

Harbour, Nova 

Scotia 

2,000 - 

8,000 

(Mathalon and 

Hill, 2014) 

Canada Shoreline  83 - 161.8 (Crichton et al., 

2017) 

Canada Canadian Lake 

Ontario 

20 – 

27,830 

(Ballent et al., 

2016) 
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nearshore, 

tributary and 

beach 

sediments 

Belize   200 – 

6,500 

This study  

Africa Northern 

Tunisia 

Lagoon-Channel 

of Bizerte 

3,000 – 

18,000  

(Abidli et al., 

2017) 

Arctic 

Ocean 

 Deep-sea 42 - 6,595 (Bergmann et 

al., 2017) 

Asia Tokyo  Tokyo Bay 1,900 (Matsuguma et 

al., 2017) 

China Beibu 

Gulf/Coastline 

of China Sea 

5,020 – 

8,720 

(Qiu et al., 

2015) 

Jakarta  Jakarta Bay 18,405 - 

38,790 

(Manalu, 

Hariyadi and 

Wardiatno, 

2017) 
 

Jakarta Mangrove area 

Pantai Indah 

Kapuk (PIK) 

216.8 - 

2,218.4 

(Manalu, 

Hariyadi and 

Wardiatno, 

2017) 

Eastern Asia Gulf of Thailand 100 - 

1,900 

(Matsuguma et 

al., 2017) 

Europe  Belgium Continental 

Shelf 

97.2 - 

166.7 

(Claessens et 

al., 2011) 

Barents Sea Norwegian 

Continental 

Shelf 

830 - 

3,900 

(Norwegian 

Environment 

Agency, 2018) 
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Central North 

Sea 

Norwegian 

Continental 

Shelf 

180 - 

31,000 

(Norwegian 

Environment 

Agency, 2018) 

Norway Reference areas 

in the 

Norwegian 

coastal shelf 

1 - 400  (Mareano, 

2017) 

The 

Netherlands 

Subtidal 100 - 

3,600 

(Leslie et al., 

2017) 

Italy Venice Lagoon 672 - 

2,175 

(Vianello et al., 

2013) 

Italy Lido di Dante 

(Beach) 

1512 (Lots et al., 

2017) 

Sweden Subtidal 16 - 2,590 (KIMO 

Sweden, 2007) 

Slovenia Beach 170.4 - 

177.8  

(Laglbauer et 

al., 2014) 

UK  North Sea and 

English Channel 

0 – 3,146  (Maes, Van der 

Meulen, et al., 

2017) 

Kachelotplate 

Island 

Beach transects 0 - 62,100  (Liebezeit and 

Dubaish, 2012) 

Romania  Beach 100 - 

5,500 

(Popa et al., 

2014) 

Baltic Sea Isle of Rügen 55.01 - 

114.72 

(Hengstmann 

et al., 2018) 

 

5.2 Occurrence and abundance of microplastics in biota  
This study confirmed the presence and occurrence of microplastics in the digestive tracts of 

Queen conchs and in riverine fish in Belize. Both species under investigation were of economic 

importance and used as a food source with a direct implication to human health. Queen conch 

resides in seagrass meadows and sandy substrates. Sediment represented a large proportion to 
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their gut content during analysis and as sediments are known to be the ultimate sink for 

microplastics in the marine environment (Woodall et al., 2014; Näkki, Setälä and Lehtiniemi, 

2019), a high occurrence of microplastics in their gut was expected. Microplastics were present 

in 41% of the conch individuals investigated with a mean concentration of 1.3 items per 

individual (0 – 7). ATR-FT-IR identified PP and cellophane to be the prevalent polymer (40%). PP 

and cellophane have been reported for sediment samples globally (Shahul Hamid et al., 2018).  

Microplastics have been reported for a wide range of marine organisms ranging from marine 

worms to seabirds with varying concentrations according to the species and locations (Table 

5.2). To the extent of our knowledge, no other studies have explored the occurrence of 

microplastics in conchs for Belize and globally. Therefore, data from Belize could not be 

expressed in a global context.  

While several studies have reported the occurrence and abundance of microplastics for marine 

fish (Table 5.2), only a limited amount of data is available for freshwater fish with a clear 

knowledge gap in monitoring data for Central America. Andrade et al. (2019) investigated the 

occurrence of microplastics in 172 individuals of 16 serrasalmid species from the Xingu River, 

the largest clear-water tributary of the Lower Amazon River (Goulding, Barthem and Ferreira, 

2003; Andrade et al., 2019). They reported a 26.7% occurrence of microplastics in serrasalmids 

under investigation. Reported occurrence of microplastics in riverine fish from the Belize River 

was in the same range with microplastics being present in 36% of the fish under investigation. 

The authors also analysed the polymer type of the extracted items using ATR-FT-IR and 

characterised 12 polymer types with a predominance of PE items (27%), followed by PVC (13%), 

Polyamide (PA) (13%) and PP (13%). PE has been characterised as the most common plastic type 

encountered in biota globally, followed by PP, PES, PA and PS (de Sá et al., 2018), which is 

consistent with our study with a prevalence of poly(ethylene:propylene:diene) (50%) followed 

by PE (30%). Rayon, a cellulose product, was also reported in fish from the Amazon River but at 

a much lower extent with 7% occurrence (Andrade et al., 2019). This was also in agreement with 

our findings with cellophane accounting for only 11% of the identified plastic items. Cellophane 

in biota has also been reported in several studies but did not represent the main prevalent 

polymer type (Castillo et al., 2016; de Sá et al., 2018). By contrast, Schmid et al. (2019) reported 

a prevalence of PA (97.4%) followed by Rayon and PE (< 2%). 

The number of items per individual (0.7 items per individual for fish) was substantially lower 

than other reported concentrations for riverine fish. However, the lack of data for freshwater is 

making comparison between studies difficult. Schmid et al. (2018), reported an occurrence of 
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microplastics in 13.7% of 14 fish species from the Amazon River Estuary corresponding to a 

mean concentration of 1.75 (0 – 12.8) items per individual (Schmid et al., 2018).  

The occurrence of microplastics in biota causes several concerns ranging from a concern for 

biodiversity for individuals and populations, as well as food safety with direct implications for 

human health. Although the transfer of microplastics from biota to human is still poorly 

understood, it is considered as negligible for larger fish as their gut is removed before 

consumption and larger particles cannot translocate into cells. There is however a concern for 

smaller seafood such as mussels, oysters, shellfish or sardines usually consumed entirely.  

Previous studies have suggested that microplastics can have a physical impact on biota 

following ingestion (Wright et al., 2013). Other studies have also suggested that microplastics 

can act as vectors for the transfer of sorbed co-contaminants with potential for release to biota 

following ingestion (Bakir et al., 2014). However, model studies have suggested that the transfer 

of sorbed co-contaminants from microplastics to biota is negligible compare to other pathways 

(i.e. contaminated prey and uptake from water) (Bakir et al., 2016; Herzke et al., 2016; Koelmans 

et al., 2016). However, it is still unclear whether plastic additives, often added a high 

concentration, could have a significant chemical impact following ingestion. Regarding human 

health implications, it has been suggested by the Food and Agriculture Organization of the 

United Nations FAO that the transfer of sorbed co-contaminants and additives from the 

ingestion of plastic particles would be negligible due to the low dietary exposure to such 

contaminants (Lusher et al., 2017).  

 
Table 5.2 Number of items per g wet weight and per individual reported in the literature for several locations. Results 
from this study are included in green for conch and fish samples. 

 Organism Location Number 

of 

items/g 

w.w. 

Number 

of items 

per 

ndividual 

Reference 

Marine worms 

 A. marina French_Belgian_Dutch 

border 

1.2 ± 

2.8  

 (Van 

Cauwenberghe 

et al., 2015) 

Sea snails 

 C. 

abbreviatus 

Western Pacific Ocean 0.16 2.9 (Abbasi et al., 

2018) 
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 Lobatus 

gigas  

Belize  0.09  

(0 - 

1.01) 

1.3  

(0 – 7) 

This study 

Prawns 

 P. indicus Western Pacific Ocean 0.59 2.3 (Abbasi et al., 

2018) 

Mussels 

 M. edulis French_Belgian_Dutch 

border 

0.2 ± 

0.3 

 (Van 

Cauwenberghe 

et al., 2015) 

M. edulis French Atlantic coast  0.61 ± 

0.56 

(Phuong et al., 

2018) 

M. edulis China 0.9 – 

4.6 

 (Li et al., 2016) 

M. edulis UK 0.7 – 

2.9 

1.1 – 

6.4 

(J. Li et al., 

2018) 

M. modiolus UK 0.086 

± 

0.031 

3.5 ± 

1.29 

(Catarino et 

al., 2017) 

M. edulis UK 3.0 ± 

0.9 

3.2 ± 

0.52 

(Catarino et 

al., 2017) 

M. edulis Norway 0 – 

24.45 

0 – 

14.67 

(A. Lusher et 

al., 2017) 

M. edulis Germany  0.36 

± 

0.07 

 (Van 

Cauwenberghe 

and Janssen, 

2014) 

M. edulis Canada  34 - 

178 

(Mathalon 

and Hill, 2014) 

Mytilus 

edulis, 

Perna viridis 

Coastal waters of China 1.52 

– 

5.36 

 (Qu et al., 

2018) 
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 Bivalves China  4.3 – 

57.2 

(Li et al., 

2015) 

Oysters 

 Saccostrea 

cucullata 

China 1.5 – 

7.2 

1.4 – 

7.0 

(H. X. Li et al., 

2018) 

C. gigas Brittany, France 0.47 

± 

0.16 

 (Van 

Cauwenberghe 

and Janssen, 

2014) 

C. gigas French Atlantic coast  2.10 ± 

1.71 

(Phuong et al., 

2018) 

Crabs 

  Vanuatu  0.021 1.71 CLiP South 

Pacific 

Fish 

Marine 

fish  

 Vanuatu 0.11 2.9 CLiP South 

Pacific 

Redhead 

cichlid 

Cichlasoma 

synspilum 

Belize river   0.7 This study 

Riverine fish  Amazon River Estuary 

in North-eastern Brazil 

 1.75 

(0 – 

12.8) 

(Schmid et al., 

2018) 

Whiting S. Sihama Western Pacific Ocean 0.25 1.5 (Abbasi et al., 

2018) 

Greater 

lizardfish 

S. tumbil Western Pacific Ocean 0.37 2.8 (Abbasi et al., 

2018) 

Pelagic and 

demersal fish 

 English Channel  1.9 ± 

0.10 

(Lusher, 

McHugh and 

Thompson, 

2013) 

Adriatic fish 

mullet 

 Adriatic Sea, Italy  1 – 

1.78 

(Avio, Gorbi 

and Regoli, 

2015) 
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Large pelagic 

fish 

 

Xiphias 

gladius, 

Thunnus; 

thynnus and 

Thunnus 

alalunga 

Mediterranean Sea  4 - 16 (Romeo et al., 

2015) 

Demersal fish  Spanish Atlantic and 

Mediterranean 

coasts 

 1.56 ± 

0.5 

(Bellas et al., 

2016) 

Pelagic and 

demersal fish 

 North and Baltic Sea  0.03 ± 

0.18 

(Rummel et 

al., 2016) 

Sunfish 

bluegill and 

Longear 

Lepomis 

Macrochirus & 

Lepomis 

megalotis 

 

Brazos River Basin, 

Central Texas, USA 

 10.1 – 

13.9 

(Peters and 

Bratton, 2016) 

Demersal & 

pelagic fish 

 Northeast Atlantic 

around Scotland 

 1.8 ± 

1.7 

(Murphy et al., 

2017) 

Flying fish C. 

rapanouiensis 

South Pacific 

coastal waters around 

Easter Island 

 1.0 ± 

0.0 

(Chagnon et 

al., 2018) 

Commercial 

fish 

 Mondego estuary in 

Portugal 

 1.67 ± 

0.27 

(Bessa et al., 

2018) 

Sardines and 

Anchovy 

Sardina 

pilchardus 

and 

Engraulis 

encrasicolus 

Spanish 

Mediterranean 

coast 

 0 - 3 (Compa et al., 

2018) 

Tuna      

Yellow Fin 

Tuna 

 South Pacific Ocean 

Vanuatu 

0.02 4.5 CLiP South 

Pacific 

Yellow Fin 

Tuna 

T. albacares South Pacific Ocean 

Coastal waters of the 

Eastern Island 

 5.0 (Chagnon et 

al., 2018) 
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Whales      

  Northern Ireland  2.95 (A. L. Lusher et 

al., 2015) 

SeaBirds      

Northern 

Fulmars 

Fulmarus 

glacialis 

Pacific and Grays 

Harbor counties, 

Washington 

 13.3 (Terepocki et 

al., 2017) 

Sooty 

Shearwaters 

Ardenna 

grisea 

 19.5 (Terepocki et 

al., 2017) 

 

6 Conclusions 
Some scientific evidence has been provided on the occurrence and abundance of microplastics 

in sediments and in some selected biota species (Queen conch L. gigas and the riverine fish 

Cichlasoma synspilum). However, additional monitoring is required for the collection of robust 

baseline monitoring data and to identify the main sources contributing to these high inputs of 

microplastics from land to riverine sources and their subsequent transport to the marine 

environment.  

 

7 Challenges and recommendations 
This report compiled the very first monitoring baseline concentration for microplastics of 
sediment and biota for Belize. Due to the relatively small data set investigated during this phase 
of the project, some challenges and recommendations were formulated:  

• Identification of likely sources of contamination:  

• Controlling/reducing sources of microplastics requires a good 

knowledge of transport processes and fluxes between environmental 

compartments. 

• Greater spatial coverage required to characterise the main inputs of 

microplastics in the environment for Belize.  

• Mapping of “sensitive areas” for Belize:  

• Risk assessment approach for microplastic monitoring with sampling for 

more “sensitive areas” 

• Matching “hot spots” of contamination with potentially sensitive 

systems (e.g. marine protected areas, fishing areas with high economic 

impact).  
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• Dose response impacts? Relate environmental concentrations with potential 

ecotoxicological effects (Predicted No-Effect Concentration (PNEC) approach). 

• Funding schemes: Ensuring long-term investment to produce long-term data sets with 

dedicated trained staff.  

These recommendations provide further detail to their related actions as part of the Belize 

Marine Litter Action Plan. For example, Actions 1.   

8 Training 
8.1 Core training course  

Staff building capacity and knowledge transfer was carried out as a priority following the 

installation of the laboratory facilities based on the “train the trainer” approach. Training 

opportunities included a core training course over a 3 days period followed by optional 

laboratory demonstrations over the duration of the project. The core training course was 

delivered at University of Belize over three days and the agenda followed as presented in Table 

8.1. The training exercise included a theoretical aspect with a presentation on the issue of 

plastics and microplastics in the environment as well as the introduction of Health and Safety 

requirements when working in a laboratory environment. The remaining training included the 

practical demonstration of the extraction, isolation and quantification of macro and 

microplastics in environmental samples, including sediments and in biota. The training was 

delivered to 11 participants from the Department of the Environment , the University of Belize, 

the Belize Bureau of Standards, The Belize Agricultural Health Authority and to the Belize 

Coastal Zone Management Authority and Institute (Figure 8.1).  

Staff building capacity was carried out by sharing Cefas Standard Operating Procedures (SOPs) 

on the extraction and analysis of microplastics in environmental matrices as well as related risk 

assessments and Control of Substances Hazardous to Health (COSHH) forms.  

Training was also delivered to some students from University of Belize already involved in plastic 

research. Delivery was achieved by shadowing specific activities until the students felt confident 

enough to conduct full activities under minimum supervision. Training courses were delivered 

in a flexible manner to adapt for different levels of technicality and complexity and to reflect 

personal motivations and personal goals previously defined via informal discussions.  

Quality and effectiveness of the delivery was subsequently assessed by circulating feedback 

questionnaires (see Appendix 6 and Figure 8.2). 40% of the participants scored the training 

course as extremely useful, 40% as useful and 20% as moderately useful indicating that the right 

stakeholders have been identified for the training exercise. 60% of the participants also 
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considered that the training course was delivered at an acceptable level. A certificate of 

attendance was also provided upon completion of the core training course (see Appendix 6). 

Written comments from the feedback questionnaires have also been compiled and will help to 

improve the delivery of training for the rest of the CLiP project.  

 

Table 8.1 Agenda of the training activities related to the laboratory activities delivered as part of CLiP.  

Date of delivery Activity Location 

22/05/2019 Theoretical aspects of 

marine litter research and 

safety requirements when 

working in a laboratory 

UB – Classroom 

22/05/2019 Chemical handling and 

Health and Safety  

UB – microplastic 

laboratory 

23/05/2019 Extraction and analysis of 

microplastics in sediments  

UB – microplastic 

laboratory 

23/05/2019 Introduction to ATR-FTIR UB – microplastic 

laboratory 

24/05/2019 Extraction and analysis of 

microplastics in biota 

UB – microplastic 

laboratory 

24/05/2019 Introduction to ATR-FTIR UB – microplastic 

laboratory 
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Figure 8.1 Participants registered for the training exercise.  

 

 

Figure 8.2 Overall ratings of the training exercise delivered for the laboratory aspect of CLiP (n=5).  
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Appendix 1 QA/QC using ATR -FTIR 

Table A1. Example of reference materials used for the quality assessment of the ATR-FTIR data.  

 

Reference 

material 

FTIR spectra  Library match Polymer 

type  

Library 

match 

(%) 

Polystyrene 

  

Polystyrene  82% 

Polyethylene  

  

Polyethylene  90% 
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Appendix 2 Abundance, occurrence and properties of macro and microplastics in sediments. 
Suspected items extracted from sediment samples and ATR-FTIR data for the items selected 
for QA/QC.  

Sample ID Image  FTIR spectra  Library search Polymer 

type  
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Appendix 3 Abundance, occurrence and properties of macro and microplastics in biota - 
Suspected items extracted from Conch samples and ATR-FTIR data for the items selected 
forQA/QC.  

Conch sample ID Extracted items  

Image  FTIR spectra Library search Polymer 

type  
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Appendix 4 Abundance, occurrence and properties of macro and microplastics in biota - 
Suspected items extracted from riverine fish samples and ATR-FTIR data for the items selected 
forQA/QC.  
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Appendix 5. Impact of particle size analysis (PSA) on the number of particles in sediment and 
associated variations between replicates.  
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Figure A5.1 Number of particles per kg dry weight sediment plotted against % gravel, % sand and % silt/clay 

 

Figure A5.2 Number of particles per kg dry weight sediment plotted against % gravel, % sand and % silt/clay 
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Appendix 6. Certificate of participation and feedbacks questionnaires circulated to 
participants upon delivery of the core training.  
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