

Overview of hazards associated with bivalve mollusc consumption: Hazard characterisation and risk assessment

Workshop of the FAO Reference Centre for Bivalve Mollusc Sanitation Hotel Ole Sereni, Nairobi, Kenya, 11 – 12 November 2019

James Lowther(Cefas)

Centre for Environment Fisheries & Aquaculture Science

Food and Agriculture Organization of the United Nations Cefas

Types of hazard associated with bivalve shellfish

TYPE OF HAZARD

SOURCES

GUIDANCE

CHEMICAL; e.g. pesticides, heavy metals Agricultural run-off, industrial discharges etc. Codex Alimentarius, General Standard for Contaminants and Toxins in Feed and Food, 2009

BIOTOXINS; i.e. toxic chemicals

produced by marine

microalgae

Naturally occurring in seawater, blooms

Assessment and management of biotoxin risks in bivalve molluscs, FAO Technical Paper, 2011

MICROBIOLOGICAL;

i.e. pathogenic bacteria, viruses, parasites Human sewage, animal faeces, some naturally occurring in seawater FAO/WHO Technical Guidance for the Development of Sanitation Programmes – <u>this workshop</u>

Microbiological hazards

Numerous microbiological pathogens potentially linked to shellfish consumption

BACTERIA

Salmonella spp., Vibrio spp., Campylobacter spp., Listeria monocytogenes

VIRUSES

Norovirus, hepatitis A virus, sapovirus, hepatitis E virus

PARASITES

Giardia intestinalis, Cryptosporidium parvum, Microsporidia

Microbiological hazards

Numerous microbiological pathogens potentially linked to shellfish consumption

BACTERIA

Salmonella spp., Vibrio spp., Campylobacter spp., Listeria monocytogenes

VIRUSES

Norovirus, hepatitis A virus, sapovirus, hepatitis E virus

PARASITES

Giardia intestinalis, Cryptosporidium parvum, Microsporidia

Salmonella enterica serovars Typhi & Paratyphi

- Gram negative bacterium
- Causes enteric fever (severe illness)
- Transmitted in human faeces
- First recorded outbreak due to shellfish consumption in **1894**

The New York Times

TYPHOID FEVER DUE TO OYSTERS.; Wesleyan University Faculty's Explanation of the Recent Epidemic.

Nov. 14, 1894

Vibrio parahaemolyticus and V.vulnificus

- Gram negative bacterium
- Causes gastroenteritis (Vp; mild illness) or sepsis (Vv; severe illness with high mortality in susceptible cases)
- Naturally occurring in marine environment; associated with low salinity, high temperature coastal waters
- Commonest shellfish–related pathogen in e.g. USA (Vp)

as

Norovirus

- Single stranded RNA virus
- Causes gastroenteritis (normally mild illness)
- Transmitted in human faeces
- Widespread worldwide
- Commonest shellfish-related pathogen in e.g. Europe
- Highly seasonal occurrence in some regions

Hepatitis A virus

- Single stranded RNA virus
- Causes hepatitis (moderate illness)
- Transmitted in human faeces
- Frequency in human populations varies widely across the globe

Shellfish-related pathogens in Africa

- Very few reports in scientific literature of shellfish-related transmission of microbial pathogens in Africa
- All major shellfish-related pathogens found in the African general population

Salmonella spp.

High incidence of typhoid fever in Africa

Vibrio spp.

Vibrio parahaemolyticus recorded in many African countries (including pathogenic strains)

Norovirus

Norovirus a common cause of gastroenteritis in Africa

	Tropical Medicine and International Health	
	VOLUME 21 NO I PP 2-17 JANUARY 2016	
COLLECTION REVIEW	Review	
Norovirus Epidemiology in Africa: A Review	Human Norovirus prevalence in Africa: a review of studies	
Janet Mans ¹ *, George E. Armah ² , A. Duncan Steele ^{3ª} , Maureen B. Taylor ¹	from 1990 to 2013	
 1 Department of Medical Virology, University of Pretoria, Pretoria, South Africa, 2 Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana, 3 MRC Diarrhoeal Pathogens Research Unit, University of Limpopo, Pretoria, South Africa Current address: Bill and Melinda Gates Foundation, Seattle, Washington, United States of America * janet.mans@up.ac.za 	Jean Pierre Kabue ¹ , Emma Meader ² , Paul R. Hunter ^{2,3} and Natasha Potgieter ¹ 1 Department of Microbiology, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, RSA 2 School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, UK 3 Department of Environmental Health, Tshwane University of Technology, Pretoria, RSA	

"In conclusion, NoV is a common pathogen in children with diarrhoea in Africa, with considerable carriage in asymptomatic children. There is however, a paucity of data on NoV infection in adults."

"Unreported sporadic gastroenteritis cases of Human Norovirus are common in Africa. Most are community-associated infections. Possible environmental transmission routes have been documented."

Hepatitis A virus

High prevalence of HAV in Africa

Shellfish-related pathogens in Africa

- Very few reports in scientific literature of shellfish-related transmission of microbial pathogens in Africa
- All major shellfish-related pathogens found in the African general population
- Under-reporting probable microbiological risks from shellfish in Africa likely as significant as those in other regions

Risk assessment

- As part of the Growing Area Risk Profile, the relative risk posed by different hazards should be assessed based on relevant factors e.g.:-
 - Pollution sources affecting the growing area (human sewage, agricultural, industrial etc.)
 - Seasonality of harvest
 - Water temperature and salinity
 - Method of processing of finished shellfish
 - Epidemiological data on pathogens in population <u>NOTE</u> <u>absence of data does not necessarily imply absence of risk</u>

Hazard Survey

- Depending on the results of the Growing Area Risk Profile, it may be necessary to include a hazard survey as part of the Growing Area Assessment
- Hazard survey involves testing samples of shellfish (or water) samples for pathogens
- Methods can be complex and require specialist equipment

Methods

Norovirus and Hepatitis A virus	ISO 15216-1	Quantification using real-time RT-PCR	CuntSudo 3
Salmonella spp.	ISO 6579-1	Detection by growth on selective bacteriological media – confirmation using biochemical/serological tests	
<i>Vibrio</i> spp.	ISO 21872-1	Detection by growth on selective bacteriological media – confirmation using biochemical/PCR tests	ONPG GLU ARA LDC ODC [CIT] H25 URB

Centre for Environment Fisheries & Aquaculture Science

Hazard Survey

- Depending on the results of the Growing Area Risk Profile, it may be necessary to include a hazard survey as part of the Growing Area Assessment
- Hazard survey involves testing samples of shellfish (or water) samples for pathogens
- Methods can be complex and require specialist equipment
- Laboratory accreditation to ISO 17025 desirable

Summary

- Wide variety of chemical, biotoxin and microbiological hazards associated with shellfish consumption
- Microbiological hazards include bacteria (Salmonella, Vibrio), viruses (norovirus, hepatitis A virus), parasites
- Risks posed by different hazards may depend on the characteristics of the growing area
- Specific testing for hazards may require specialist laboratories

