Sample collection, transport, analysis and quality of test results Louise Stockley

11th - 12th November 2019 Nairobi, Kenya

Introduction

- Harvesting area monitoring provides evidence for the presence of, and concentration of faecal indicators and/or specific hazards in the growing area
- Monitoring data used to inform classification, should be of the highest quality
- This means controlling the collection, transport and analysis of a sample is essential, as well as being able to demonstrate the quality of the test results

Sample collection – Local authorities responsibility

- Provide protocols for sample collection and transport requirements
- Provide training to Sampling Officer in the relevant sampling techniques
- Specify the location of the sampling identifier point (SIP)
- Carry out periodic audits to ensure protocols are adhered too

Sampling of bivalve molluscs

- Collect in same way as commercial sampling
- Check shellfish are alive, healthy and of a commercial size
- Select shellfish at random to avoid bias from environmental factors

Do not immerse shellfish once collected

Centre for Environment Fisheries & Aquaculture

23

Science

Wash to remove mud and debris

Place shellfish in 2 heavy duty bags

SCIENTIFIC NAME	COMMON NAME (ENGLISH)	NUMBER
Pecten maximus	Atlantic great scallop King scallop	12 - 18
Aequipecten opercularis Chlamys (Aequipecten) opercularis (Linnaeus)	Queen scallop	18 - 35
Crassostrea gigas	Pacific oyster	12 - 18
Ostrea edulis	European flat oyster Flat oyster	12 - 18
Mercenaria mercenaria	northern quahog = Hard clams	<mark>12</mark> – 18
Tapes philippinarum	Manila clam	<u>18</u> – 35
Ruditapes decussatus	Grooved carpet shells	<mark>1</mark> 8 – 35
Spisula solida	Thick trough shells	35 – <mark>5</mark> 5
Mya arenaria	Sand gapers	12 - 18
Ensis spp.	Razor clams	12 - 18
<i>Mytilus</i> spp.	Mussels	<mark>18</mark> — 35
Cerastoderma edule	Cockles	35 – 55
Donax spp.	Bean clams	40 - 70

Sampling of water

- Collect water before shellfish or sediment samples to reduce sediment disturbance
- Use a sterile glass or plastic bottle
 - Bags can be used for transporting liquid
- Take sample from middle of water column
 - Sampling pole can be used to collect sample
 - Immediately replace lid tightly to prevent leaks

Sample transport

- Cool packs must not be in direct contact with shellfish
- Sample transport conditions must not affect the microbiological integrity of the sample
- Inappropriate transport conditions can lead to unrepresentative results

Laboratory receipt and analysis

Laboratory receipt and analysis

Laboratory receipt and analysis

Sample

analysis

of results

- Sample submission form and temperature checked
- Sample information recorded and ID number assigned (1)

• Shellfish shucked (2), homogenised (3) and analysed same day (4)

- Results checked by trained staff
- Results recorded on computer (5)
- **Reporting** Results reported to customer

Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB. Telephone: +44 (0) 1305 206600 Direct line: +44 (0) 1305 206644

RESULTS OF MICROBIOLOGICAL EXAMINATIONS OF SHELLFISH HYGIENE SAMPLES

Name of client:		
Address of client:		
Cefas sample number:		
Your reference:		Species:
Date received:	Date of analys	is:
	-	brio parahaemolyticus in 25 g

SOP 1172 - 'General procedure for receipt, opening and homogenisation of shellfish'

SOP 1175 - 'Enumeration of *Escherichia coli* in bivalve molluscan shellfish using the Most Probable Number technique' was used for the analysis of *E. coli*.

SOP 1176 - 'Detection of *Salmonella* spp. in bivalve molluscan shellfish' was used for the analysis of *Salmonella* <u>spp.</u>. This excludes *Salmonella* Typhi.

SOP 1333 - 'Detection of Vibrio parahaemolyticus in bivalve molluscan shellfish' was used for the analysis of V. parahaemolyticus.

Comments

Recognised microbiological methods used in bivalve mollusc sanitation programmes around the world

MATRIX	TARGET ORGANISM	METHOD
Bivalve molluscs	Sample preparation for all bacteriological methods	ISO 6887-3
	Preparation of dilutions of homogenized samples for all bacteriological methods	ISO 6887-1
	E. coli	ISO 16649-3 (5 tube format)
	MSC	EURL generic protocol (EURL 2007) FDA MSC Method
	Salmonella spp. (detection)	ISO 6579-1
	Salmonella spp. (quantification)	ISO 6579-3
	Pathogenic vibrios	See FAO/WHO (2016)
	Hepatitis A virus and norovirus (quantification)	ISO/TS 15216-1
	Hepatitis A virus and norovirus (qualitative detection)	ISO/TS 15216-2
Water	Faecal coliforms and presumptive E. coli by membrane filtration	ISO 9308-1
	Faecal coliforms and presumptive <i>E. coli</i> by Most Probable Number (MPN)	ISO 9308-2
	MSC	ISO 10705-1
	Standard Methods for the Examination of Water and Wastewater (APHA, 1985)	АРНА

- Methods listed are validated and can be used in the sanitation programme – method will require verification in the laboratory before use
- Alternative method can be used but should be validated against a validated method

Choice of indicators

Choice of indicators - E. coli

- *E. coli* was first used as an indicator of faecal water pollution to predict the risk from *S*. Typhi
- Presence of *E. coli* in foodstuffs is evidence of contamination with faecal pollution
- Strong association between *E. coli* levels in a harvesting areas, pollution and the risk of norovirus presence
- Low *E. coli* results does not guarantee the absence virus in shellfish

23

Science

E. coli detection method – ISO 16649-3:2015

1. Preparation of shellfish

Dilute shellfish 1:3 with 0.1% P

2. Recovery step – MMGB

23

Inoculate 5 tube x 3 format, incubate 37±1°C for 24±2h •

3. Plating confirmation – Chromogenic medium

Inoculate TBX plates with acid producing tubes - detects • presence of β -glucoronidase enzyme (not pathogenic serotypes), incubate 37±1°C for 21±3h

4. Interpretation of MPN/ 100g shellfish flesh

 Confirmation of E. coli and generation of MPN tube combination e.g. 2, 0, 0

Appendix 1: TABLE 1: E. coli Most Probable Number (MPN)

MPN of organisms: table for multiple tube methods using $5 \times 1g$, $5 \times 0.1g$, $5 \times 0.01g$.

0	2 2 Q			
0	0	0	<18 1	1
0	1	0	18	1
1	0	0	20	1
1	0	1	40	2
1	1	0	40	1
1	2	0	61	2
2	0	0	45	1
2	0	1	68	2
2	1	0	68	1
2	1	1	92	2
2	2	0	93	1

Choice of indicators – Male specific coliphage

- FRNA bacteriophage are found abundantly in shellfish waters impacted by sewage effluent and agricultural waste
- Group of single-stranded RNA viruses that infect bacteria
- Have similar physical and genomic properties to human enteric viruses, making it a good alternative indicator to *E. coli*

FRNA bacteriophage detection method – ISO 10705-1:1995

1. Preparation of shellfish

• Dilute shellfish 1:3 with 0.1% P

2. Preparation of bacterial host

- *S. typhimrium* (WG49) genetically modified with *E. coli* sex pili
- Grow host in TYGB to obtain $7 40 \times 10^7$ cfu/ml

3. Agar overlay

 Mix bacterial host, molten agar (TYGA) and sample, form an overlay, incubate 37±1°C for 18±4h

4. Interpretation of cfu / 100g shellfish flesh

 Count plaques – Bacteriophage attach to sex pili of *E. coli,* cells lyse causing visible holes in bacterial lawn

Cefas

'Rapid' methods for E. coli enumeration in shellfish

Method name	Pros	Cons	Comments
TBGA-MPN (EU reference)	 "Gold-standard"Established, well- characterised	 ~2 days for results 	Reference method in European legislation
Impedance	ValidatedRapid (24 hours)	ExpensiveUses proprietary consumables	Mostly used in France
Pour-plate	 Validated Rapid (24 hours) Cheap (ish) 	 High detection limit (200 CFU/100 g) Availability of media? 	Mostly used in Netherlands
PCR-MPN	 Rapid (30 hours) Sensitive Equipment and consumables commonly available 	 Not validated Needs more work May be expensive 	Not recommended for use yet

Accreditation to ISO 17025:2017

- Holding accreditation demonstrates a laboratory can operate competently and generate valid results, thereby promoting confidence in their work
- ISO/IEC 17025 General requirements for the competence of testing and calibration laboratories

General structure

Proficiency testing

- Proficiency testing (PT), or external quality assessment (EQA) is a valuable tool for assessing laboratory performance and verifying the accuracy and reliability of test results
- Regular participation demonstrates a commitment to the maintenance and improvement of a laboratories performance and provides valuable proof to customers of their competence
- PT samples should be analysed in same way as routine samples
- Reported results are scored to help in identifying problems and allow individual distributions and over time (rolling)

PT benefits

- Provides an independent assessment of a laboratory performance
- Provides a performance comparison with other participant laboratories
- Helps to identify areas where there may be problems
- A requirement for auditing bodies (for quality and trade)
- Used to train staff and assess ongoing competency
- Help generate data to support method development and validation
- Periodically testing of matrix samples is important to test aspects of methods not challenged by Lenticule[™] samples

Summary

- Data collected during a Sampling Programmes can be used in important public health decisions
- Results generated must originate from an International method
- Need to have assurance that results are of very high quality
- A way to demonstrate quality is through accreditation
- Participation in Proficiency Testing is a mechanism to demonstrate competence

Thank you for listening

Any questions?

