Potential hazards associated with bivalve shellfish

James Lowther (Cefas)

Centre for Environment Fisheries & Aquaculture Science

Food and Agriculture Organization of the United Nations

Types of hazard associated with bivalve shellfish

TYPE OF HAZARD

SOURCES

CHEMICAL; e.g. pesticides, heavy metals Agricultural runoff, industrial discharges etc.

GUIDANCE

Codex Alimentarius, General Standard for Contaminants and Toxins in Feed and Food, 2009

BIOTOXINS; i.e. toxins produced by marine microalgae

Naturally occurring in seawater, blooms Assessment and management of biotoxin risks in bivalve molluscs, FAO Technical Paper, 2011

MICROBIOLOGICAL; i.e. pathogenic

bacteria, viruses,

parasites

; Human sewage, animal faeces, some naturally occurring in seawater FAO/WHO Technical Guidance for the Development of Sanitation Programmes

Chemical hazards

A variety of different toxic chemicals can accumulate in shellfish

HEAVY METALS Lead (Pb), Cadmium (Cd), Mercury (Hg), Arsenic (As) etc.

PERSISTENT ORGANIC POLLUTANTS Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), dioxins, furans etc.

RADIONUCLIDES

Radioisotopes of Polonium (Po), Lead (Pb), Thorium (Th), Uranium (U) etc.

Chemical hazards

- Toxic chemicals derive from heavy industry, waste disposal, mining, agriculture (pesticides) etc.
- Studies have shown heavy metals and organic pollutants in Senegalese shellfish

Centre for Environment Fisheries & Aquaculture Science

Are exploited mangrove molluscs exposed to Persistent Organic Pollutant contamination in Senegal, West Africa?

N. Bodin ª, º 😤 🖾, R. N'Gom Ka ^b, F. Le Loc'h ^{a, b}, J. Raffray ^b, H. Budzinski ^c, L. Peluhet ^e, L. Tito de Morais ^b

Biotoxins

- Wide variety of toxins produced by naturally occurring "blooms" of marine algae (linked to environmental conditions)
- Cause a wide variety of illnesses

Type of Shellfish Poisoning	Main symptoms	Main toxin	Main algal source
Paralytic Shellfish Poisoning (PSP)	Neurological	Saxitoxin	Alexandrium spp.
Diarrhetic Shellfish Poisoning (DSP)	Gastrointestinal	Lipophilic toxins	Dinophysis spp.
Amnesic Shellfish Poisoning (ASP)	Neurological	Domoic acid	<i>Pseudo-nitzschia</i> spp.

 $H_2N +$

HO HN

HO''

NH

 $+ NH_2$

NH

Biotoxins

- No reports on presence of algal biotoxins in Senegal
- Presence of biotoxins in shellfish reported in other African countries
- Small number of shellfish poisoning incidents reported
- Environmental conditions suitable under-reporting possible?

Centre for Environment Fisheries & Aquaculture Science

Microbiological hazards

Numerous microbiological pathogens potentially linked to shellfish consumption

BACTERIA

Salmonella spp., Vibrio spp., Campylobacter spp., Listeria monocytogenes

VIRUSES

Norovirus, hepatitis A virus, sapovirus, hepatitis E virus

PARASITES

Giardia intestinalis, Cryptosporidium parvum, Schistosoma spp.

Microbiological hazards

Numerous microbiological pathogens potentially linked to shellfish consumption

BACTERIA

<u>Salmonella spp.,</u> <u>Vibrio spp.,</u> Campylobacter spp., Listeria monocytogenes

VIRUSES

Norovirus, hepatitis A virus, sapovirus, hepatitis E virus

PARASITES

Giardia intestinalis, Cryptosporidium parvum, Schistosoma spp.

Salmonella enterica serovars Typhi & Paratyphi

- Gram negative bacterium
- Causes enteric fever (severe illness)
- Transmitted in human faeces
- First recorded outbreak due to shellfish consumption in **1894**

The New York Times

TYPHOID FEVER DUE TO OYSTERS.; Wesleyan University Faculty's Explanation of the Recent Epidemic.

Nov. 14, 1894

Vibrio spp.

- Gram negative bacterium
- Depending on species, causes gastroenteritis (mild to severe illness) or sepsis (severe illness with high mortality in susceptible cases)
- Naturally occurring in marine environment; associated with low salinity, high temperature coastal waters
- Commonest shellfish–related pathogen in e.g. USA (*Vibrio parahaemolyticus*)

Centre for Environment Fisheries & Aquaculture Science

Norovirus

- Single stranded RNA virus
- Causes gastroenteritis (normally mild illness)
- Transmitted in human faeces
- Widespread worldwide
- Commonest shellfish-related pathogen in e.g. Europe
- Highly seasonal occurrence in some regions

Hepatitis A virus

- Single stranded RNA virus
- Causes hepatitis (moderate illness)
- Transmitted in human faeces
- Frequency in human populations varies widely across the globe

Shellfish-related pathogens in Senegal

- No reports in scientific literature of shellfish-related transmission of microbial pathogens in Senegal
- All major shellfish-related pathogens found in the general population in Senegal (some detections in seafood)

Salmonella spp.

High incidence of typhoid fever in Senegal

ORIGINAL ARTICLE

BACTERIOLOGY

Prevalence and characterization of extended-spectrum β -lactamase-producing clinical Salmonella enterica isolates in Dakar, Senegal, from 1999 to 2009

D. Harrois^{1,2,±}, S. Breuree^{2,3,±}, A. Seck², A. Delauné¹, S. Le Hello¹, M. Pardos de la Gándara¹, L. Sontag¹, J.-D. Perrier-Gros-Claude², J.-M. Sire², B. Garin^{2,4} and F.-X. Weill¹

 Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, France, 2) Institut Pasteur de Dakar, Unité de Bactériologie Médicale et Environnementale, Dakar, Senegal, 3) Institut Pasteur de Bangui, Laboratoire de Biologie Médicale, Bangui, République Centrafricaine and 4) Institut Pasteur de Madagascar, Laboratoire de Bactériologie Expérimentale, Antananarivo, Madagascar

Vibrio spp.

Vibrio spp. detected in 30% of seafood samples from Senegal

♠ Foodborne Pathogens and Disease > VOL. 10, NO. 12 | Original Articles

Vibrio cholerae and Vibrio parahaemolyticus Detected in Seafood Products from Senegal

Ignace Coly 🔄, Amy Gassama Sow, Malang Seydi, and Jaime Martinez-Urtaza

Published Online: 21 Nov 2013 | https://doi.org/10.1089/fpd.2013.1523

Norovirus

Norovirus a common cause of gastroenteritis in African countries including Senegal

	ONE
--	-----

COLLECTION REVIEW

Norovirus Epidemiology in Africa: A Review

Janet Mans¹*, George E. Armah², A. Duncan Steele^{3ª}, Maureen B. Taylor¹

1 Department of Medical Virology, University of Pretoria, Pretoria, South Africa, 2 Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana, 3 MRC Diarrhoeal Pathogens Research Unit, University of Limpopo, Pretoria, South Africa

¤ Current address: Bill and Melinda Gates Foundation, Seattle, Washington, United States of America * janet.mans@up.ac.za

Tropical Medicine and International Health

VOLUME 21 NO I PP 2-17 JANUARY 2016

Review

Human Norovirus prevalence in Africa: a review of studies from 1990 to 2013

Jean Pierre Kabue¹, Emma Meader², Paul R. Hunter^{2,3} and Natasha Potgieter¹

Department of Microbiology, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, RSA
School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, UK
Department of Environmental Health, Tshwane University of Technology, Pretoria, RSA

Prevalence and genetic characterization of noroviruses in children with acute gastroenteritis in Senegal, 2007–2010

Ousmane Kebe¹, Maria-Dolores Fernandez-Garcia¹, Boris-Enock Zinsou¹, Amadou Diop², Amary Fall¹, Ndack Ndiaye¹, Jan Vinjé³, Kader Ndiaye¹

¹Institut Pasteur, Dakar, Senegal

²Pediatric Hospital Albert Royer, Dakar, Senegal

³Viral Gastroenteritis Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Hepatitis A virus

- High prevalence of HAV in Senegal
- May be low levels of symptomatic HAV disease in Senegal due to high population immunity
- Export to low prevalence countries potentially risky e.g. exports from Peru have caused HAV outbreaks in Europe

Shellfish-related pathogens in Senegal

- No reports in scientific literature of shellfish-related transmission of microbial pathogens in Senegal
- All major shellfish-related pathogens found in the general population in Senegal (some detections in seafood)
- Under-reporting probable microbiological risks from shellfish in Senegal likely as significant as those in other regions

Summary

- Wide variety of chemical, biotoxin and microbiological hazards associated with shellfish consumption
- Microbiological hazards include bacteria (Salmonella, Vibrio), viruses (norovirus, hepatitis A virus), parasites
- Evidence of many shellfish-related hazards in Senegal or other countries in e.g. West Africa
- Risks posed by different hazards may depend on the characteristics of the growing area

