Microbiological data – Importance of sample transport, sample receipting, methods and quality of test results Louise Stockley

Introduction

- Taking regular samples from a growing area (monitoring), provides information on contamination of the area and informs controls
- Data from monitoring programmes are used to make important decisions (e.g., classification of the area and controls)
- Therefore all components of the programme should be of a high quality and traceable

Sample collection

Important considerations

- Protocols for sample collection and transport
- Training for samplers taking Official Samples i.e., samples used in official monitoring programmes
- Location of the sampling point (SP) to show traceability and consistency
- Periodic audits by the Official Body to ensure protocols are followed

Example protocol

Centre for Environment Fisheries & Aquaculture Science

Protocol for the Collection of Shellfish under the Microbiological Classification Monitoring Programme (EU Regulation 627/2019)

> Version 10 May 2020

	13 Page	s	
cument prepared by:	L. Coates	Cefas	Classification: Not classified
ent quality checked by:	S. Hart	Celas	Review Date: N/A
ument approved by:	A Younger	Cefas	Date: 06/05/2020

od Staandarde Agenoy London 30 332 71-89 eilfish @food.gov.uk od Standards Agenoy Wales 820 676940 Millish wales@food.gov.uk

Docume

he Centre for Environment, Isheries & Aquaculture clance Weymouth Laboratory arrack Road he Nothe Weymouth

Tel +64 (0) 1305 200800 Pau +64 (0) 1305 208801 <u>www.oeflas.co.uk</u> Cellas is an executive agency o Delta

Sampling of bivalve molluscs

- Collect in same way as commercial sampling
- Ensure bivalve molluscs are alive and of a commercial size
- Select each bivalve mollusc at random to avoid bias from environmental factors
- Collect relevant environmental measurements

Do not re-immerse the sample in water once collected

Wash to remove mud and debris

Place sample in 2 strong bags

Pecten maximus	Atlantic great scallop King scallop	12 - 18
Aequipecten opercularis Chlamys (Aequipecten) opercularis (Linnaeus)	Queen scallop	18 - 35
Crassostrea gigas	Pacific oyster	12 - 18
Ostrea edulis	European flat oyster Flat oyster	12 - 18
Mercenaria mercenaria	northern quahog = Hard clams	12 - 18
Tapes philippinarum	Manila clam	18-35
Ruditapes decussatus	Grooved carpet shells	18-35
Spisula solida	Thick trough shells	35 - 55
Mya arenaria	Sand gapers	12-18
Ensis spp.	Razor clams	12-18
<i>Mytilus</i> spp.	Mussels	18 - 35
Cerastoderma edule	Cockles	35 — 55
Donax spp.	Bean clams	40 - 70

Sampling of water

- Collect water before bivalve molluscs or sediment samples to reduce sediment disturbance
- Use a sterile glass or plastic bottle
 - Bags can be used for transporting liquid
- Take sample from middle of water column
- Sampling pole can be used to collect sample
- Immediately replace lid tightly to prevent leaks

Sample transport

- Samples should be transported in a temperature controlled container
- Transport conditions must not affect the microbiological content of the samples
- Samples should be transported between 0 and 10°C. However, if the water temperature at collection is above 10°C, samples should arrive at the laboratory below the temperature at collection
- Samples should be analysed within 24 hrs of being collected (This can be extended if studies have shown samples can be left for longer)

Laboratory receipt and analysis

 Sample submission form and temperature checked (1)

Sample

Receipt

Record sample information and ID
 number assigned

Growing Area: _			Loca	tion:				untry municipa	iity:						
Date	Star	ttime		Endtime		Name of s	sampler:		N	(arme of	harvester:				
Sample	Sample Actual Time	Time	te Type od sample				Physicochemical parameters			Type	Type of sample				
identification number	point identifier	sampling boation	(24-hour format)	Seawater	Freshwater	Efluent	Bivalve molluscs (species)	Temp (*) (рH	Oxygen	Salinity		Water/ effluent	Bivalve
													Total of Fecal coliforms		
													E. Coli		
													Salmone la spp.		
													V. parahaemolyticus		
													<i>V. cholerae</i> 01 or non-01		
													V. vuhificus		
													Heavy metals: Cd, Pb, Hg, As		
													Pesticides		
													Saxitoxin	1	

Laboratory receipt and analysis

• Sample submission form and temperature checked (1)

Sample

Receipt

Sample

analysis

- Record sample information and ID
 number assigned
 - Bivalve molluscs are shucked (opened) (2), homogenised (3) and analysed same day (4)
- Results checked by 2 trained staff

Laboratory receipt and analysis

Sample submission form and temperature checked (1)

Sample

Receipt

Sample

analysis

Reporting

of results

- Record sample information and ID number assigned
 - Bivalve molluscs are shucked (opened) (2), homogenised (3) and analysed same day (4)
- Results checked by 2 trained staff

• Results recorded on computer (5) Results reported to customer

Weymouth Laboratory,

Weymouth, Dorset, DT4 8UB.

Barrack Road,

The Nothe,

SOP 1172 - 'General procedure for receipt, opening and homogenisation of shellfish'

SOP 1175 - 'Enumeration of Escherichia coli in bivalve molluscan shellfish using the Most Probable Number technique' was used for the analysis of E. coli.

SOP 1176 - 'Detection of Salmonella spp. in bivalve molluscan shellfish' was used for the analysis of Salmonella spp., This excludes Salmonella Typhi.

SOP 1333 - 'Detection of Vibrio parahaemolyticus in bivalve molluscan shellfish' was used for the analysis of V. parahaemolyticus.

Comments

Recognised microbiological methods for indicators and pathogens

 Methods listed can be used in the monitoring programme – method will require verification in the laboratory before use

 Alternative methods can be used but should be validated against a method listed

MATRIX	TARGET ORGANISM	METHOD
Bivalve molluscs	Sample preparation for all bacteriological methods	ISO 6887-3
	Preparation of dilutions of homogenized samples for all bacteriological methods	ISO 6887-1
	E. coli	ISO 16649-3 (5 tube format)
	MSC	EURL generic protocol (EURL 2007) FDA MSC Method
	Salmonella spp. (detection)	ISO 6579-1
	Salmonella spp. (quantification)	ISO 6579-3
	Pathogenic vibrios	See FAO/WHO (2016)
	Hepatitis A virus and norovirus (quantification)	ISO/TS 15216-1
	Hepatitis A virus and norovirus (qualitative detection)	ISO/TS 15216-2
Water	Faecal coliforms and presumptive <i>E. coli</i> by membrane filtration	ISO 9308-1
	Faecal coliforms and presumptive <i>E. coli</i> by Most Probable Number (MPN)	ISO 9308-2
	MSC	ISO 10705-1
	Standard Methods for the Examination of Water and Wastewater (APHA, 1985)	APHA

E. coli detection method – ISO 16649-3:2015

1. Preparation of bivalve molluscs

• Dilute bivalve molluscs 1:3 with 0.1% P

2. Recovery step – MMGB

- Inoculate 5 tube x 3 format, incubate 37±1°C for 24±2h
- 3. Plating confirmation Chromogenic medium
 - Inoculate TBX plates with acid producing tubes detects β-glucoronidase enzyme presence, incubate 44±1°C for 21±3h

4. Interpretation of MPN/ 100g bivalve mollusc flesh

- Confirmation of *E. coli* β-glucoronidase +ve (blue-green colonies)
- MPN generated from tube combination e.g. 2, 0, 0

ISO 16649-3 is the EU reference method. This is the method expected to be used for exporting to Europe

			AND TO	Contraction of the	10
-	Appendix 1:				
	TABLE 1: E. coli Mos	t Probable Number	(MPN)		
	MPN of organisms:	table for multiple to	ube methods using 5 × 1g,	5 × 0.1g, 5 × 0.01	g.
6	1g	0.1g	0.01g	MPN/100g	Category
	0	0	0	<18 1	1
	0	1	0	18	1
	1	0	0	20	1
Al Co	1	0	1	40	2
55	1	1	0	40	1
	1	2	0	61	2
	2	0	0	45	1
	2	0	1	68	2
	2	1	0	68	1
	2	1	1	92	2
	2	2	0	93	1
	3	0	0	78	1
1					1

MPN calculation program for the control of shellfish, version 1, dated 2017-01-25, for calculatin

More information can be found in the following sheets 'Equations & Info' and 'Examples'. For details see: B.

General data and data for generating the input tables								
	Name of experiment	Date of experiment	No. of samples	Max. no. of dilutions				

Note: A sample/matrix consists of the different dilutions for one target organism (e.g. *Escherichia coli*) with bivalve shellfish matrix. For the Official Control of bivalve shellfish in the EU generally at least 3 dilutions must be analysed.

FRNA bacteriophage detection method – ISO 10705-1:1995

1. Preparation of bivalve molluscs

• Dilute shellfish 1:3 with 0.1% P

2. Preparation of bacterial host

- *S. typhimrium* (WG49) genetically modified with *E. coli* sex pili
- Grow host in TYGB to obtain $7 40 \times 10^7$ cfu/ml

3. Agar overlay

• Mix bacterial host, molten agar (TYGA) and sample, form an overlay, incubate 37±1°C for 18±4h

4. Interpretation of cfu / 100g bivalve mollusc flesh

 Count plaques – Bacteriophage attach to sex pili of *E. coli,* cells lyse causing visible holes in bacterial lawn

Accreditation to ISO 17025:2017

- Holding accreditation demonstrates a laboratory can operate competently and generate valid results, thereby promoting confidence in the work performed
- ISO/IEC 17025 General requirements for the competence of testing and calibration laboratories

Proficiency testing (PT)

- PT or external quality assessment (EQA) is a valuable tool to assess the performance, accuracy and reliability of a laboratory's test result
- Samples should be analysed in the same way as routine samples
- Laboratory's results are compared with other participating laboratories
- Allocated scores can be used to assess performance from a single distribution and over time (rolling)

PT benefits

- Provides an independent assessment of a laboratory's performance
- Helps identify areas where there may be problems
- Participation is a requirement for auditing bodies (for quality and trade)
- Used to train staff and assess ongoing competency
- Used to support method development and validation
- Periodic testing of matrix samples helps assess aspects of the method not challenged by laboratory constructed material (e.g. Lenticule[™])

- Data generated during a monitoring programme are used to make important public health decisions and should be of a very high quality
- Protocols should be available that describe how a sample should be collected, transported and analysed
- A number of internationally approved methods are suitable for use in a monitoring programme, although some trading partners require specific testing methods
- Accreditation is a way for a laboratory to demonstrate the quality of their results
- Participation in Proficiency Testing is a mechanism to demonstrate a laboratory's competency

Thank you