Rapid Response and Long-Term Monitoring for Marine Birds – The Role of Science

> Julie Black julie.black@jncc.gov.uk

Contents

- JNCC role in event of pollution incident
- Effects of oil on marine birds
- Rapid response and the SOSI
- Post-spill monitoring
- Beyond science

JNCC role in event of incident

- JNCC advises the UK Government on nature conservation
- JNCC Duty Officers, on-call 24/7
- Core members of the Environment Group
- Support from range of specialists: benthic, mammal, bird
- Core members of SERG and PREMIAM

Effects of oil on environment

- The impacts to wildlife from an oil spill are caused by:
 - The physical nature of the oil
 - The chemical components
- Different oils behave differently in the environment
- Seabirds are particularly vulnerable to contamination and related impacts

Effects of oil on marine birds

- Loss of buoyancy
- Unable to fly/swim
- Dehydration and starvation
- Loss of body weight and general condition
- Toxicology

Post-spill Monitoring

What is the objective of monitoring?

- to assess the impact on species/habitats of nature conservation importance
- to provide evidence to support subsequent compensation or insurance claims
- assess the impact of the pollution events on Good Environmental Status (GES)

Difficult to prove causal link

Layers of evidence; build up a story?

Short-term monitoring

Immediate effects

- beached birds surveys
- toxicology
- outward signs of contamination
- chemical composition analysis (identify source of contamination)
- at-sea survey recording evidence of oiling

Limitations

- direct effects only
- what proportion of affected individuals are washed ashore, and where?
- does not imply longer term (population) impacts

Medium/long-term monitoring

Long term effects

- direct and indirect
- demographics trends
- population trends
- toxicology analyses of breeders (failed and successful)
- tracking (identify which colonies/individuals use affected area)

Limitations

- control populations
- confounding factors
- time lag, may need many years (10 +)

Species	Population change (%) 1969-70 to 1985-88	Population change (%) 1985-88 to 1998-2002	Population change (%) 1998-2002 to 2015
northern fulmar	+77	-3	-31
Manx shearwater	n/a	n/a	n/a
European storm-petrel	n/a	n/a	n/a
Leach's storm-petrel	n/a	n/a	n/a
northern gannet	+39	+39*	+34**
great cormorant	+9	+10	-8
European shag	+21	-27	-34
Arctic skua	+226	-37	-64
great skua	+148	+26	+18
black-legged kittiwake	+24	-25	<mark>-44</mark>
black-headed gull	+5	0	+38
Mediterranean gull	n/a	+10,900	+374
common gull	+25	+36	n/a
lesser black-backed gull	+29	+40	n/a
herring gull	-48	-13	n/a
great black-backed gull	-7	-4	-11
little tern	+58	-23	-18
Sandwich tern	+33	-15	+13
common tern	+9	-9	-10
roseate tern	-66	-83	+229
Arctic tern	+50	-31	+17
guillemot	+77	+31	+5
razorbill	+16	+21	+32
black guillemot	n/a	+3***	n/a
Atlantic puffin	+15	+19	n/a

* change between censuses in 1984-85 and 2004-05.

** change between census in 2003-04 and colonies surveyed in 2013-14 and 2015.

*** change between censuses in 1982-91 and 1998-2002

Evidence from past incidents

DEMOGRAPHIC effects:

- Decreased over-winter survival
- Decreased breeding productivity

PHYSIOLOGICAL effects:

- Acute (ingestion)
- Chronic sub-lethal

BUFFER effects:

- Large pool of non-breeders.

LACK OF RECOVERY:

- Persistent pollution?

Beyond Science

- Need clear objective
- How good does the evidence need to be?
- Individual vs population effects
- Reliant on available resources and capacity
- Engagement, agreement, buy-in and coordination across multiple organisations.

Thank you for listening

ACKNOWLEDGEMENTS

Duty Officers within JNCC: Bethany Graves, Rosanne Dinsdale, Sarah Canning, Nick Moore, Louise Pell-Walpole **Marine Ornithologists within JNCC**: Lise Ruffino, Fraser Carter

