Red Mark Syndrome of rainbow trout 
(Oncorhynchus mykiss Walbaum)

Introduction

Red Mark Syndrome (RMS), otherwise known as Coldwater Strawberry Disease (CWSD), is a disease of rainbow trout, characterised by the appearance of multiple ulcerated skin swellings, of varying intensity, on the flanks of affected fish (Pond et al. 2006; Verner – Jeffreys et al. 2006).

The condition was first noted in Scotland. By 2005, it was found on 12 sites in Scotland, all of which were sites receiving live fish from the hatchery where the disease first emerged (the index farm). In early 2005, the condition was diagnosed for the first time in fish farmed in England. Farmers in both Scotland and England report that the disease is prevalent at low temperatures (less than 15 °C). Early signs can include scale loss, prior to the emergence of the characteristic external lesions and there are no systemic signs of infection (i.e. no affect on appetite, growth or mortality).

The condition causes severe economic losses to farmers both in treatment costs and in that affected fish are downgraded at harvest.

The results of investigations of affected farms in England and Wales and subsequent interdisciplinary studies to determine an aetiological agent are reported. As a recent study has implicated the rainbow trout bacterial pathogen Flavobacterium psychrophilum as potentially being linked to the condition (Pond et al. 2006), particular effort was made to identify whether this, or a closely related organism, was associated with diseased fish.

Outbreak investigations

Epidemiological outbreak investigations of farms in England and Wales, suffering from RMS, were carried out. Two of the farms investigated, Farm A and Farm B, were also used as a source of fish for transmission experiments. At each visit, 10 fish with RMS were examined and samples taken for diagnostic testing (bacteriology, mycology, virology, histopathology, parasitology, biochemistry). Farm records and fish movements were also discussed with the farmers.

- The initial spread of RMS was associated with movement of live fish from Scotland to sites in England (including Farm A).
- The condition subsequently spread to other production sites linked to the initially infected farms.
- Within a farm, spread from affected stocks to previously unaffected naïve fish was demonstrated.
- There was another outbreak of RMS in a farm in Wales (Farm B) in 2005 with likely spread to other farms supplied by Farm B.
- Prevalence was variable (between 5-70% of fish in a stock affected).
- Treatment of affected fish with antibiotics reportedly controls the development of the disease, which may indicate a bacterial aetiology.

Acknowledgments

This work was funded through Defra emerging diseases contracts FC1151, FC1166 and FC1178.

References


Diagnostic bacteriology, virology and mycology of field samples and laboratory infected material

- No bacterial agents consistently isolated.
- No fungal agents isolated.
- Lesion samples from trial infected fish and cultured bacteria negative for F. psychrophilum by PCR (Figure 2).
- Lesion samples from 4/5 Farm A infected fish, used as infection source in trial, tested positive for F. psychrophilum (Figure 2).
- Lesion samples from 0/5 Farm B infected fish, used as infection source in trial, tested negative for F. psychrophilum (Figure 2).
- No virus cultured on any of the six cell lines used, under a range of incubation conditions.

Culture independent analysis of cohabitation trial lesion material for 16S rRNA genes of bacterial origin

- 198 partial 16S rRNA genes were cloned from lesion and skin (negative control) material and identified by a combination of Restriction Fragment Length Polymorphism (RFLP) and gene sequence analysis (as described by Pond et al. 2006).
- 83% of the resultant phylotypes were assigned to three main bacterial groups: Acidovorax-like β-Proteobacteria (51%), Methylobacter and Bradyrhizobium-like α-Proteobacteria (19%) and Porphyrrobacter-like β-Proteobacteria (17%).
- All the main phylotypes were also recovered from the negative control as well as lesion material.

Histopathology

- Epidermis generally unaffected, possibly some lymphocytic infiltration.
- Lifting and dissolution of scales with osteoclast involvement.
- Predominantly lymphocytic inflammation, focal to multifocal lesions, initially in the connective tissue of the dermis and extending into the underlying adipose and muscle tissue.

Conclusions

- RMS was apparently transmitted from affected to naïve fish in the field and in the laboratory, demonstrating it has an infectious aetiology.
- RMS has a long latency: greater then 50 days when fish are held at 10°C.
- Differences in the rate of transmission of condition between fish in contact with Farm A as opposed to Farm B were observed. It is not clear whether this was related to differences in virulence of the responsible agent or due to the interfering effects of observed concurrent infections in the Farm A-affected fish.
- Environmental factors (water quality) did not noticeably affect transmission rate in the laboratory.
- F. psychrophilum DNA was not consistently isolated from field or laboratory infected fish, lessening the likelihood that it, or a closely related organism is the sole responsible aetiological agent.

Further work required

- Risk to other farmed and wild fish needs to be established.
- Aetiological agent needs to be identified.
- Prevalence and spread of disease needs to be better understood.
- Suitable control methods need to be identified (as an approach to continued application of antimicrobials).
- Case definition needs to be established.

© Crown Copyright 2007